RAS BiologyБиохимия Biochemistry

  • ISSN (Print) 0320-9725
  • ISSN (Online) 3034-5294

COMPARATIVE ANALYSIS OF MESOPHYLL AND BUNDLE SHEATH CHLOROPLASTS FROM MAIZE PLANTS SUBJECTED TO SALT STRESS

PII
S30345294S0320972525040076-1
DOI
10.7868/S3034529425040076
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 90 / Issue number 4
Pages
581-592
Abstract
The effect of salt stress was studied in mesophyll (M) and bundle sheath (BS) chloroplasts of maize plants treated with NaCl for 5 days. Pigment content, chlorophyll fluorescence at 77 K, activity of photosystems (PS) I and II, polypeptide compositions and ultrastructure of the thylakoid membranes were determined in plants grown under different salinity conditions (0, 100, 200, and 250 mM NaCl). The salt treatment caused a decrease in fluorescence, photochemical activity of PSII and PSI, as well as the protein content of the thylakoids. At high salt concentrations, the F735/F686 nm fluorescence ratio in M chloroplasts was reduced, while it was stimulated in BS chloroplasts. The photochemical activity of PSII was reduced in both chloroplasts, while there was no statistically significant difference in the activity of PSI compared to the control. According to the analysis of the protein content of the thylakoid membranes of M and BS chloroplasts, polypeptides belonging to the core antenna of PSII (47 kDa and 43 kDa) and LHCII (28-24 kDa) were present in both types of membranes, but their intensity was weak in BS thylakoids. The synthesis of the 68 kDa apoprotein belonging to the core of PSI was inhibited in the M membranes. There was no noticeable change in the membrane system of BS thylakoids. Salt stress had a greater impact on the ultrastructure of M chloroplasts than on BS ones and caused the formation of granal stacking in BS chloroplast. These results may indicate different responses of the two chloroplast types to salt stress.
Keywords
Zea mays солевой стресс хлоропласты мезофилла и обкладки тилакондные белки фотосистемы ультраструктурные изменения
Date of publication
01.05.2025
Year of publication
2025
Number of purchasers
0
Views
75

References

  1. 1. Williams, R. J. (2003) Restriction endonucleases: classification, properties, and applications, Mol. Biotechnol., 23, 225-244, https://doi.org/10.1385/mb:23:3:225.
  2. 2. Roberts, R. J. (2003) A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes, Nucleic Acids Res., 31, 1805-1812, https://doi.org/10.1093/nar/gkg274.
  3. 3. Madhusoodanan, U. K., and Rao, D. N. (2010) Diversity of DNA methyltransferases that recognize asymmetric target sequences, Crit. Rev. Biochem. Mol. Biol., 45, 125-145, https://doi.org/10.3109/10409231003628007.
  4. 4. Vasu, K., and Nagaraja, V. (2013) Diverse functions of restriction-modification systems in addition to cellular defense, Microbiol. Mol. Biol. Rev., 77, 53-72, https://doi.org/10.1128/mmbr.00044-12.
  5. 5. Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G. A., Sonnhammer, E. L. L., Tosatto, S. C. E., Paladin, L., Raj, S., Richardson, L. J., Finn, R. D., and Bateman, A. (2020) Pfam: the protein families database in 2021, Nucleic Acids Res., 49, D412-D419, https://doi.org/10.1093/nar/gkaa913.
  6. 6. Roberts, R. J., Vincze, T., Posfai, J., and Macelis, D. (2014) REBASE - a database for DNA restriction and modification: enzymes, genes and genomes, Nucleic Acids Res., 43, D298-D299, https://doi.org/10.1093/nar/gku1046.
  7. 7. Edgar, R. C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res., 32, 1792-1797, https://doi.org/10.1093/nar/gkh340.
  8. 8. Waterhouse, A. M., Procter, J. B., Martin, D. M. A, Clamp, M., and Barton, G. J. (2009) Jalview Version 2 - a multiple sequence alignment editor and analysis workbench, Bioinformatics, 25, 1189-1191, https://doi.org/10.1093/bioinformatics/btp033.
  9. 9. Lefort, V., Desper, R., and Gascuel, O. (2015) FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program, Mol. Biol. Evol., 32, 2798-2800, https://doi.org/10.1093/molbev/msv150.
  10. 10. Kumar, S., Stecher, G., and Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 33, 1870-1874, https://doi.org/10.1093/molbev/msw054.
  11. 11. Letunic, I., and Bork, P. (2021) Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation, Nucleic Acids Res., 49, W293-W296, https://doi.org/10.1093/nar/gkab301.
  12. 12. Li, W., and Godzik, A. (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences, Bioinformatics, 22, 1658-1659, https://doi.org/10.1093/bioinformatics/btl158.
  13. 13. Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., and Steinegger, M. (2022) ColabFold: making protein folding accessible to all, Nat. Methods, 19, 679-682, https://doi.org/10.1038/s41592-022-01488-1.
  14. 14. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., et al. (2021) Highly accurate protein structure prediction with AlphaFold, Nature, 596, 583-589, https://doi.org/10.1038/s41586-021-03819-2.
  15. 15. DeLano, W. L. (2002) Pymol: An open-source molecular graphics tool, CCP4 Newsl. Protein Crystallogr., 40, 82-92.
  16. 16. Crooks, G. E., Hon, G., Chandonia, J. M., and Brenner, S. E. (2004) WebLogo: A sequence logo generator, Genome Res., 14, 1188-1190, https://doi.org/10.1101/gr.849004.
  17. 17. Gingeras, T. R., Milazzo, J. P., and Roberts, R. J. (1978). A computer assisted method for the determination of restriction enzyme recognition sites, Nucleic Acids Res., 5, 4105-4127, https://doi.org/10.1093/nar/5.11.4105.
  18. 18. Higgins, L. S., Besnier, C., and Kong, H. (2001) The nicking endonuclease N.BstNBI is closely related to type IIS restriction endonucleases MlyI and PleI, Nucleic Acids Res., 29, 2492-2501, https://doi.org/10.1093/nar/29.12.2492.
  19. 19. Kachalova, G. S., Rogulin, E. A., Yunusova, A. K., Artyukh, R. I., Perevyazova, T. A., Matvienko, N. I., Zheleznaya, L. A., and Bartunik, H. D. (2008) Structural analysis of the heterodimeric type IIS restriction endonuclease R.BspD6I acting as a complex between a monomeric site-specific nickase and a catalytic subunit, J. Mol. Biol., 384, 489-502, https://doi.org/10.1016/j.jmb.2008.09.033.
  20. 20. Malone, T., Blumenthal, R. M., and Cheng, X. (1995) Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltransferases, and suggests a catalytic mechanism for these enzymes, J. Mol. Biol., 253, 618-632, https://doi.org/10.1006/jmbi.1995.0577.
  21. 21. Yang, Z., Horton, J. R., Zhou, L., Zhang, X. J., Dong, A., Zhang, X., Schlagman, S. L., Kossykh, V., Hattman, S., and Cheng, X. (2003) Structure of the bacteriophage T4 DNA adenine methyltransferase, Nat. Struct. Biol., 10, 849855, https://doi.org/10.1038/nsb973.
  22. 22. Horton, J. R., Liebert, K., Hattman, S., Jeltsch, A., and Cheng, X. (2005) Transition from nonspecific to specific DNA interactions along the substrate-recognition pathway of dam methyltransferase, Cell, 121, 349-361, https://doi.org/10.1016/j.cell.2005.02.021.
  23. 23. Horton, J. R., Liebert, K., Bekes, M., Jeltsch, A., and Cheng, X. (2006) Structure and substrate recognition of the Escherichia coli DNA adenine methyltransferase, J. Mol. Biol., 358, 559-570, https://doi.org/10.1016/j.jmb.2006.02.028.
  24. 24. Nell, S., Estibariz, I., Krebes, J., Bunk, B., Graham, D. Y., Overmann, J., Song, Y., Spröer, C., Yang, I., Wex, T., Korlach, J., Malfertheiner, P., and Suerbaum, S. (2018) Genome and methylome variation in Helicobacter pylori with a cag pathogenicity island during early stages of human infection, Gastroenterology, 154, 612-623, https://doi.org/10.1053/j.gastro.2017.10.014.
  25. 25. Friedrich, T., Fatemi, M., Gowhar, H., Leismann, O., and Jeltsch, A. (2000) Specificity of DNA binding and methylation by the M.FokI DNA methyltransferase, Biochim. Biophys. Acta, 1480, 145-159, https://doi.org/10.1016/s0167-4838 (00)00065-0.
  26. 26. Tomilova, J. E., Kuznetsov, V. V., Abdurashitov, M. A., Netesova, N. A., and Degtyarev, S. K. (2010) Recombinant DNA-methyltransferase M1.Bst19I from Bacillus stearothermophilus 19: purification, properties, and amino acid sequence analysis, Mol. Biol., 44, 606-615, https://doi.org/10.1134/S0026893310040163.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library