ОБНБиохимия Biochemistry

  • ISSN (Print) 0320-9725
  • ISSN (Online) 3034-5294

СВЕРХСПИРАЛИЗАЦИЯ ДНК СНИЖАЕТ ХОЛОДОЧУВСТВИТЕЛЬНОСТЬ ПЛАВЛЕНИЯ ПРОМОТОРА РНК-ПОЛИМЕРАЗАМИ Deinococcus-Thermus

Код статьи
S30345294S0320972525080099-1
DOI
10.7868/S3034529425080099
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 90 / Номер выпуска 8
Страницы
1189-1200
Аннотация
Плавление промоторной ДНК вокруг стартовой точки транскрипции является важнейшим этапом транскрипции, необходимым для инициации синтеза РНК. У бактерий плавление промотора осуществляется холоферментом РНК-полимеразы (РНКП), состоящим из каталитического кор-фермента и σ-фактора, участвующего в распознавании промотора. Ранее было обнаружено, что РНКП из термофильной бактерии и мезофильной бактерии не способны инициировать транскрипцию при низкой или умеренной температуре. Эти свойства зависят от их σ-факторов, а гибридные холоферменты, включающие эти σ-факторы и кор-фермент , обладают похожими свойствами. В данной работе показано, что сверхспирализация ДНК снижает холодочувствительность плавления промотора РНКП Deinococcus-Thermus и гибридными холоферментами. Сверхспирализация также повышает стабильность промоторных комплексов этих РНКП и снижает их чувствительность к высокой ионной силе. Подобные свойства РНКП Deinococcus-Thermus позволяют предположить, что их активность может регулироваться степенью сверхспирализации генома, в том числе при стрессовом ответе клеток.
Ключевые слова
РНК-полимераза Deinococcus radiodurans сверхспирализация ДНК плавление промотора устойчивость к стрессу
Дата публикации
17.06.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
77

Библиография

  1. 1. Hustmyer, C. M., and Landick, R. (2024) Bacterial chromatin proteins, transcription, and DNA topology: inseparable partners in the control of gene expression, Mol. Microbiol., 122, 81-112, https://doi.org/10.1111/mmi.15283.
  2. 2. Kant, A., Guo, Z., Vinayak, V., Neguembor, M. V., Li, W. S., Agrawal, V., Pujadas, E., Almassalha, L., Backman, V., Lakadamyali, M., Cosma, M. P., and Shenoy, V. B. (2024) Active transcription and epigenetic reactions synergistically regulate meso-scale genomic organization, Nat. Commun., 15, 4338, https://doi.org/10.1038/s41467-024-48698-z.
  3. 3. Figueroa-Bossi, N., Fernandez-Fernandez, R., Kerboriou, P., Bouloc, P., Casadesus, J., Sanchez-Romero, M. A., and Bossi, L. (2024) Transcription-driven DNA supercoiling counteracts H-NS-mediated gene silencing in bacterial chromatin, Nat. Commun., 15, 2787, https://doi.org/10.1038/s41467-024-47114-w.
  4. 4. Kumar, C., and Remus, D. (2024) Looping out of control: R-loops in transcription-replication conflict, Chromosoma, 133, 37-56, https://doi.org/10.1007/s00412-023-00804-8.
  5. 5. Santos-Pereira, J. M., and Aguilera, A. (2015) R loops: new modulators of genome dynamics and function, Nat. Rev. Genet., 16, 583-597, https://doi.org/10.1038/nrg3961.
  6. 6. Sutormin, D., Galivondzhyan, A., Musharova, O., Travin, D., Rusanova, A., Obraztsova, K., Borukhov, S., and Severinov, K. (2022) Interaction between transcribing RNA polymerase and topoisomerase I prevents R-loop formation in E. coli, Nat. Commun., 13, 4524, https://doi.org/10.1038/s41467-022-32106-5.
  7. 7. Borowiec, J. A., and Gralla, J. D. (1985) Supercoiling response of the lac ps promoter in vitro, J. Mol. Biol., 184, 587-598, https://doi.org/10.1016/0022-2836 (85)90305-5.
  8. 8. Buc, H., and McClure, W. R. (1985) Kinetics of open complex formation between Escherichia coli RNA polymerase and the lac UV5 promoter: Evidence for a sequential mechanism involving three steps, Biochemistry, 24, 2712-2723, https://doi.org/10.1021/bi00332a018.
  9. 9. Mishra, R. K., Gopal, V., and Chatterji, D. (1990) Correlation between the DNA supercoiling and the initiation of transcription by Escherichia coli RNA polymerase in vitro: role of the sequences upstream of the promoter region, FEBS Lett., 260, 273-276, https://doi.org/10.1016/0014-5793 (90)80121-x.
  10. 10. Nickerson, C. A., and Achberger, E. C. (1995) Role of curved DNA in binding of Escherichia coli RNA polymerase to promoters, J Bacteriol, 177, 5756-5761, https://doi.org/10.1128/jb.177.20.5756-5761.1995.
  11. 11. Ehrlich, R., Larousse, A., Jacquet, M. A., Marin, M., and Reiss, C. (1985) In vitro transcription initiation from three different Escherichia coli promoters. Effect of supercoiling, Eur. J. Biochem., 148, 293-298, https://doi.org/10.1111/j.1432-1033.1985.tb08838.x.
  12. 12. Burns, H., and Minchin, S. (1994) Thermal energy requirement for strand separation during transcription initiation: the effect of supercoiling and extended protein DNA contacts, Nucleic Acids Res., 22, 3840-3845, https://doi.org/10.1093/nar/22.19.3840.
  13. 13. Ding, B. (2010) Virolds: self-replicating, mobile, and fast-evolving noncoding regulatory RNAs, Wiley Interdiscip. Rev. RNA, 1, 362-375, https://doi.org/10.1002/wrna.22.
  14. 14. Figueroa-Bossi, N., Guerin, M., Rahmouni, R., Leng, M., and Bossi, L. (1998) The supercoiling sensitivity of a bacterial tRNA promoter parallels its responsiveness to stringent control, EMBO J., 17, 2359-2367, https://doi.org/10.1093/emboj/17.8.2359.
  15. 15. Revyakin, A., Liu, C., Ebright, R. H., and Strick, T. R. (2006) Abortive initiation and productive initiation by RNA polymerase involve DNA scrunching, Science, 314, 1139-1143, https://doi.org/10.1126/science.1131398.
  16. 16. Kulbachinsky, A., Bass, I., Bogdanova, E., Goldfarb, A., and Nikiforov, V. (2004) Cold sensitivity of thermophilic and mesophilic RNA polymerases, J. Bacteriol., 186, 7818-7820, https://doi.org/10.1128/JB.186.22.7818-7820.2004.
  17. 17. Meier, T., Schickor, P., Wedel, A., Cellai, L., and Heumann, H. (1995) In vitro transcription close to the melting point of DNA: analysis of Thermotoga maritima RNA polymerase-promoter complexes at 75 degrees C using chemical probes, Nucleic Acids Res., 23, 988-994, https://doi.org/10.1093/nar/23.6.988.
  18. 18. Minakhin, L., Nechaev, S., Campbell, E. A., and Severinov, K. (2001) Recombinant Thermus aquaticus RNA polymerase, a new tool for structure- based analysis of transcription, J. Bacteriol., 183, 71-76, https://doi.org/10.1128/JB.183.1.71-76.2001.
  19. 19. Nikiforov, V. G. (1970) Substrate dependent heterogeneity of initiation by RNA polymerase from thermophilic B. megaterium, FEBS Lett., 9, 186-188, https://doi.org/10.1016/0014-5793 (70)80351-9.
  20. 20. Remold-O'Donnell, E., and Zillig, W. (1969) Purification and properties of DNA-dependent RNA-polymerase from Bacillus stearothermophilus, Eur. J. Biochem., 7, 318-323, https://doi.org/10.1111/j.1432-1033.1969.tb19610.x.
  21. 21. Xue, Y., Hogan, B. P., and Erle, D. A. (2000) Purification and initial characterization of RNA polymerase from Thermus thermophilus strain HBB, Biochemistry, 39, 14356-14362, https://doi.org/10.1021/bio012538.
  22. 22. Barinova, N., Zhilina, E., Bass, I., Nikiforov, V., and Kulbachinsky, A. (2008) Lineage-specific amino acid substitutions in region 2 of the RNA polymerase sigma subunit affect the temperature of promoter opening, J. Bacteriol., 190, 3088-3092, https://doi.org/10.1128/JB.00008-08.
  23. 23. Miropolskaya, N., Ignatov, A., Bass, I., Zhilina, E., Pupov, D., and Kulbachinsky, A. (2012) Distinct functions of regions 1.1 and 1.2 of RNA polymerase sigma subunits from Escherichia coli and Thermus aquaticus in transcription initiation, J. Biol. Chem., 287, 23779-23789, https://doi.org/10.1074/jbc.M112.363242.
  24. 24. Feklistov, A., Barinova, N., Sevostyanova, A., Heyduk, E., Bass, I., Vvedenskaya, I., Kuznecklov, K., Merkiene, E., Stavrovskaya, E., Klimasauskas, S., Nikiforov, V., Heyduk, T., Severinov, K., and Kulbachinsky, A. (2006) A basal promoter element recognized by free RNA polymerase sigma subunit determines promoter recognition by RNA polymerase holoenzyme, Mol. Cell, 23, 97-107, https://doi.org/10.1016/j.molcel.2006.06.010.
  25. 25. Feklistov, A., Sharon, B. D., Darst, S. A., and Gross, C. A. (2014) Bacterial sigma factors: a historical, structural, and genomic perspective, Annu. Rev. Microbiol., 68, 357-376, https://doi.org/10.1146/annurev-micro-092412-155737.
  26. 26. Haugen, S. P., Berkinen, M. B., Ross, W., Gaal, T., Ward, C., and Gourse, R. L. (2006) rRNA promoter regulation by nonoptimal binding of sigma region 1.2: an additional recognition element for RNA polymerase, Cell, 125, 1069-1082, https://doi.org/10.1016/j.cell.2006.04.034.
  27. 27. Miropolskaya, N., Artsimovitch, I., Klimasauskas, S., Nikiforov, V., and Kulbachinsky, A. (2009) Allosteric control of catalysis by the F loop of RNA polymerase, Proc. Natl. Acad. Sci. USA, 106, 18942-18947, https://doi.org/10.1073/pnas.0905402106.
  28. 28. Miropolskaya, N., Esyunina, D., Klimasauskas, S., Nikiforov, V., Artsimovitch, I., and Kulbachinsky, A. (2014) Interplay between the trigger loop and the F loop during RNA polymerase catalysis, Nucleic Acids Res., 42, 544-552, https://doi.org/10.1093/nar/gkt877.
  29. 29. Borukhov, S., and Goldfarb, A. (1993) Recombinant Escherichia coli RNA polymerase: purification of individually over-expressed subunits and in vitro assembly, Protein. Express Purif., 4, 503-511, https://doi.org/10.1006/prep.1993.1066.
  30. 30. Nudler, E., Kashlev, M., Nikiforov, V., and Goldfarb, A. (1995) Coupling between transcription termination and RNA polymerase inchworming, Cell, 81, 351-357, https://doi.org/10.1016/0092-8674 (95)90388-7.
  31. 31. Pommer, Y., Sun, Y., Huang, S. N., and Nitiss, J. L. (2016) Roles of eukaryotic topoisomerases in transcription, replication and genomic stability, Nat. Rev. Mol. Cell Biol., 17, 703-721, https://doi.org/10.1038/nrm.2016.111.
  32. 32. Kulbachinsky, A., Feklistov, A., Kraheninnikov, I., Goldfarb, A., and Nikiforov, V. (2004) Aquamers to Escherichia coli core RNA polymerase that sense its interaction with rifampicin, sigma-subunit and GreB, Eur. J. Biochem., 271, 4921-4931, https://doi.org/10.1111/j.1432-1033.2004.04461.x.
  33. 33. Gourse, R. L. (1988) Visualization and quantitative analysis of complex formation between E. coli RNA polymerase and an rRNA promoter in vitro, Nucleic Acids Res., 16, 9789-9809, https://doi.org/10.1093/nar/16.20.9789.
  34. 34. Newlands, J. T., Ross, W., Gosink, K. K., and Gourse, R. L. (1991) Factor-independent activation of Escherichia coli rRNA transcription. II. Characterization of complexes of rrnB PI promoters containing or lacking the upstream activator region with Escherichia coli RNA polymerase, J. Mol. Biol., 220, 569-583, https://doi.org/10.1016/0022-2836 (91)90101-b.
  35. 35. Ding, H. F., and Winkler, H. H. (1993) Characterization of the DNA-melting function of the Rickettsia prowazekii RNA polymerase, J. Biol. Chem., 268, 3897-3902, https://doi.org/10.1016/S0021-9258 (18)53557-2.
  36. 36. Miropolskaya, N., Esyunina, D., and Kulbachinskiy, A. (2017) Conserved functions of the trigger loop and Gre factors in RNA cleavage by bacterial RNA polymerases, J. Biol. Chem., 292, 6744-6752, https://doi.org/10.1074/jbc.M116.766592.
  37. 37. Miropolskaya, N., Nikiforov, V., Klimasauskas, S., Artsimovitch, I., and Kulbachinskiy, A. (2010) Modulation of RNA polymerase activity through trigger loop folding, Transcription, 1, 89-94, https://doi.org/10.4161/rms.1.2.12544.
  38. 38. Goldman, S. R., Sharp, J. S., Vvedenskaya, I. O., Livny, J., Dove, S. L., and Nickels, B. E. (2011) NanoRNAs prime transcription initiation in vivo, Mol. Cell, 42, 817-825, https://doi.org/10.1016/j.molecl.2011.06.005.
  39. 39. Agapov, A. A., and Kulbachinskiy, A. V. (2015) Mechanisms of stress resistance and gene regulation in the radioresistant bacterium Deinococcus radioaurans, Biochemistry (Moscow), 80, 1201-1216, https://doi.org/10.1134/s0006297915100016.
  40. 40. Slade, D., and Radman, M. (2011) Oxidative stress resistance in Deinococcus radioaurans, Microbiol. Mol. Biol. Rev., 75, 133-191, https://doi.org/10.1128/MMBR.00015-10.
  41. 41. Esyunina, D., Turtoia, M., Pupov, D., Bass, I., Klimasauskas, S., Belogurov, G., and Kulbachinskiy, A. (2016) Lineage-specific variations in the trigger loop modulate RNA proofreading by bacterial RNA polymerases, Nucleic Acids Res., 44, 1298-1308, https://doi.org/10.1093/nar/gkv1521.
  42. 42. Agapov, A., Esyunina, D., Pupov, D., and Kulbachinskiy, A. (2016) Regulation of transcription initiation by Gfh factors from Deinococcus radioaurans, Biochem. J., 473, 4493-4505, https://doi.org/10.1042/BCJ20160659.
  43. 43. Esyunina, D., Agapov, A., and Kulbachinskiy, A. (2016) Regulation of transcriptional pausing through the secondary channel of RNA polymerase, Proc. Natl. Acad. Sci. USA, 113, 8699-8704, https://doi.org/10.1073/pnas.1603531113.
  44. 44. Kota, S., Chaudhary, R., Mishra, S., and Misra, H. S. (2021) Topoisomerase IB interacts with genome segregation proteins and is involved in multipartite genome maintenance in Deinococcus radioaurans, Microbiol. Res., 242, 126609, https://doi.org/10.1016/j.microes.2020.126609.
  45. 45. Kota, S., Charaka, V. K., Ringgaard, S., Waldor, M. K., and Misra, H. S. (2014) PprA contributes to Deinococcus radioaurans resistance to nalidixic acid, genome maintenance after DNA damage and interacts with deinococcal topoisomerases, PLoS One, 9, e85288, https://doi.org/10.1371/journal.pone.0085288.
  46. 46. Kota, S., Charaka, V. K., and Misra, H. S. (2014) PprA, a pleiotropic protein for radioresistance, works through DNA gyrase and shows cellular dynamics during postirradiation recovery in Deinococcus radioaurans, J. Genet., 93, 349-354, https://doi.org/10.1007/s12041-014-0382-z.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека