RAS BiologyБиохимия Biochemistry

  • ISSN (Print) 0320-9725
  • ISSN (Online) 3034-5294

STAT3/Snail SIGNALING AND PROGRESSION OF HYPOXIA TOLERANCE IN BREAST CANCER CELLS

PII
S30345294S0320972525080078-1
DOI
10.7868/S3034529425080078
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 90 / Issue number 8
Pages
1163-1176
Abstract
One of the hallmark features of malignant neoplasms is their ability to sustain growth under hypoxic conditions resulting from insufficient oxygenation of tumor tissues. Prolonged hypoxia is associated with the gradual adaptation of tumor cells to low oxygen levels, leading to enhanced survival, increased metastatic potential, and the development of resistance to anticancer therapies. The aim of this study was to investigate the mechanisms underlying breast cancer cell adaptation to prolonged hypoxia and the maintenance of the hypoxia-tolerant phenotype. Using long-term cultivation under low oxygen conditions (1% O), we established hypoxia-adapted sublines of luminal (MCF-7/H) and triple-negative (MDA-MB-231/H) breast cancer cells, characterized by stable growth in a hypoxic environment. We demonstrated that the acquisition of hypoxia tolerance is accompanied by the activation of the HIF-1α-dependent transcription factor STAT3 and persistent overexpression of Snail, a key downstream effector of STAT3. The maintenance and stabilization of this phenotype are mediated by miR-181a-2, which targets the STAT3/Snail signaling axis in resistant cells. Analysis of DNA methylation status revealed no significant changes in the expression or activity of DNA methyltransferases (DNMTs) in the hypoxia-adapted cells. However, pharmacological inhibition of DNMTs using decitabine, or DNMT knockdown, increased cellular sensitivity to hypoxia and partially reversed the resistant phenotype, which was accompanied by the activation of pro-apoptotic p53 signaling. In conclusion, our findings suggest that acquired hypoxia tolerance in breast cancer cells is, at least in part, mediated by the activation of the miR-181a-2/STAT3/Snail signaling pathway. Furthermore, demethylating agents may represent a promising therapeutic approach to target hypoxia-tolerant cancer cell populations.
Keywords
гипоксия рак молочной железы STAT3 Snail метилпрование miR-181a-2
Date of publication
28.06.2025
Year of publication
2025
Number of purchasers
0
Views
76

References

  1. 1. Semenza, G. L. (2016) The hypoxic tumor microenvironment: a driving force for breast cancer progression, Biochim. Biophys. Acta, 1863, 382-391, https://doi.org/10.1016/j.bbamcr.2015.05.036.
  2. 2. Rankin, E. B., Nam, J. M., and Giaccia, A. J. (2016) Hypoxia: signaling the metastatic cascade, Trends Cancer, 2, 295-304, https://doi.org/10.1016/j.trecan.2016.05.006.
  3. 3. Shi, R., Liao, C., and Zhang, Q. (2021) Hypoxia-driven effects in cancer: characterization, mechanisms, and therapeutic implications, Cells, 10, 678, https://doi.org/10.3390/cells10030678.
  4. 4. Lundgren, K., Holm, C., and Landberg, G. (2007) Hypoxia and breast cancer: prognostic and therapeutic implications, Cell. Mol. Life Sci., 64, 3233-3247, https://doi.org/10.1007/s00018-007-7390-6.
  5. 5. Petrova, V., Annicchiarico-Petruzzelli, M., Melino, G., and Amelio, I. (2018) The hypoxic tumour microenvironment, Oncogenesis, 7, 10, https://doi.org/10.1038/s41389-017-0011-9.
  6. 6. Conley, S. J., Gheordunescu, E., Kakarala, P., Newman, B., Korkaya, H., Heath, A. N., Clouthier, S. G., and Wicha, M. S. (2012) Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia, Proc. Natl. Acad. Sci. USA, 109, 2784-2789, https://doi.org/10.1073/pnas.1018866109.
  7. 7. Claesson‐Welsh, L., and Welsh, M. (2013) VEGFA and tumour angiogenesis, J. Int. Med., 273, 114-127, https://doi.org/10.1111/joim.12019.
  8. 8. Kinoshita, M., Johnson, D. L., Shatney, C. H., Lee, Y. L., and Mochizuki, H. (2001) Cancer cells surviving hypoxia obtain hypoxia resistance and maintain anti‐apoptotic potential under reoxygenation, Int. J. Cancer, 91, 322-326, https://doi.org/10.1002/1097-0215 (200002)9999:99993.0.CO;2-P.
  9. 9. Lee, P., Chandel, N. S., and Simon, M. C. (2020) Cellular adaptation to hypoxia through hypoxia inducible factors and beyond, Nat. Rev. Mol. Cell Biol., 21, 268-283, https://doi.org/10.1038/s41580-020-0227-y.
  10. 10. Romero, Y., and Aquino-Galvez, A. (2021) Hypoxia in cancer and fibrosis: part of the problem and part of the solution, Int. J. Mol. Sci., 22, 8335, https://doi.org/10.3390/ijms22158335.
  11. 11. Choudhry, H., and Harris, A. L. (2018) Advances in hypoxia-inducible factor biology, Cell Metab., 27, 281-298, https://doi.org/10.1016/j.cmet.2017.10.005.
  12. 12. Pant, D., Narayanan, S. P., Vijay, N., and Shukla, S. (2020) Hypoxia-induced changes in intragenic DNA methylation correlate with alternative splicing in breast cancer, J. Biosci., 45, 3, https://doi.org/10.1007/s12038-019-9977-0.
  13. 13. Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J. Immunol. Methods, 65, 55-63, https://doi.org/10.1016/0022-1759 (83)90303-4.
  14. 14. Scherbakov, A. M., Vorontsova, S. K., Khamidullina, A. I., Mrdjanovic, J., Andreeva, O. E., Bogdanov, F. B., Salnikova, D. I., Jurisic, V., Zavarzin, I. V., and Shirinian, V. Z. (2023) Novel pentacyclic derivatives and benzylidenes of the progesterone series cause anti-estrogenic and antiproliferative effects and induce apoptosis in breast cancer cells, Invest. New Drugs, 41, 142-152.
  15. 15. Livak, K. J., and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method, Methods, 25, 402-408, https://doi.org/10.1006/meth.2001.1262.
  16. 16. Scherbakov, A. M., Komkov, A. V., Komendantova, A. S., Yastrebova, M. A., Andreeva, O. E., Shirinian, V. Z., Hajra, A., and Volkova, Y. A. (2018) Steroidal pyrimidines and dihydrotriazines as novel classes of anticancer agents against hormone-dependent breast cancer cells, Front. Pharmacol., 8, 289196, https://doi.org/10.3389/fphar.2017.00979.
  17. 17. Scherbakov, A. M., Lobanova, Y. S., Shatskaya, V. A., Onopchenko, O. V., Gershtein, E. S., and Krasil’nikov, M. A. (2006) Activation of mitogenic pathways and sensitization to estrogen-induced apoptosis: two independent characteristics of tamoxifen-resistant breast cancer cells? Breast Cancer Res. Treat., 100, 1-11, https://doi.org/10.1007/s10549-005-9075-x.
  18. 18. Mruk, D. D., and Cheng, C. Y. (2011) Enhanced chemiluminescence (ECL) for routine immunoblotting: an inexpensive alternative to commercially available kits, Spermatogenesis, 1, 121-122, https://doi.org/10.4161/spmg.1.2.16606.
  19. 19. Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. (2012) NIH Image to ImageJ: 25 years of image analysis,Nat. Methods, 9, 671-675, https://doi.org/10.1038/nmeth.2089.
  20. 20. Alonso Villela, S. M., Kraïem, H., Bouhaouala-Zahar, B., Bideaux, C., Aceves Lara, C. A., and Fillaudeau, L. (2020) A protocol for recombinant protein quantification by densitometry, MicrobiologyOpen, 9, 1175-1182, https://doi.org/10.1002/mbo3.1027.
  21. 21. Cañada-García, D., and Arévalo, J. C. (2023) A simple, reproducible procedure for chemiluminescent western blot quantification, Bio-Protocol, 13, e4667, https://doi.org/10.21769/BioProtoc.4667.
  22. 22. Andreeva, O. E., Sorokin, D. V., Vinokurova, S. V., Kopnin, P. B., Elkina, N. V., Katargin, A. N., Faskhutdinov, R. S., Salnikova, D. I., Scherbakov, A. M., and Krasil’nikov, M. A. (2024) Breast cancer cell resistance to hormonal and targeted therapeutics is correlated with the inactivation of the NR6A1 axis, Cancer Drug Resist., 7, 48, https://doi.org/10.20517/cdr.2024.69.
  23. 23. Nanduri, J., Semenza, G. L., and Prabhakar, N. R. (2017) Epigenetic changes by DNA methylation in chronic and intermittent hypoxia, Am. J. Physiol. Lung Cell. Mol. Physiol., 313, L1096-L1100, https://doi.org/10.1152/ajplung.00325.2017.
  24. 24. Niu, J., Xue, A., Chi, Y., Xue, J., Wang, W., Zhao, Z., Fan, M., Yang, C. H., Shao, Z.-m., and Pfeffer, L. M. (2016) Induction of miRNA-181a by genotoxic treatments promotes chemotherapeutic resistance and metastasis in breast cancer, Oncogene, 35, 1302-1313, https://doi.org/10.1038/onc.2015.189.
  25. 25. Semenza, G. L. (1999) Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1, Annu. Rev. Cell Dev. Biol., 15, 551-578, https://doi.org/10.1146/annurev.cellbio.15.1.551.
  26. 26. Dzhalilova, D. S., and Makarova, O. V. (2021) HIF-dependent mechanisms of relationship between hypoxia tolerance and tumor development, Biochemistry (Moscow), 86, 1163-1180, https://doi.org/10.1134/S0006297921100011.
  27. 27. Carmeliet, P. (2005) VEGF as a key mediator of angiogenesis in cancer, Oncology, 69, 4-10, https://doi.org/10.1159/000088478.
  28. 28. Semba, H., Takeda, N., Isagawa, T., Sugiura, Y., Honda, K., Wake, M., Miyazawa, H., Yamaguchi, Y., Miura, M., and Jenkins, D. M. (2016) HIF-1α-PDK1 axis-induced active glycolysis plays an essential role in macrophage migratory capacity, Nat. Commun., 7, 11635, https://doi.org/10.1038/ncomms11635.
  29. 29. He, Y., Luo, Y., Zhang, D., Wang, X., Zhang, P., Li, H., Ejaz, S., and Liang, S. (2019) PGK1-mediated cancer progression and drug resistance, Am. J. Cancer Res., 9, 2280-2302.
  30. 30. Acs, G., Acs, P., Beckwith, S. M., Pitts, R. L., Clements, E., Wong, K., and Verma, A. (2001) Erythropoietin and erythropoietin receptor expression in human cancer, Cancer Res., 61, 3561-3565.
  31. 31. Kordaß, T., Osen, W., and Eichmüller, S. B. (2018) Controlling the immune suppressor: transcription factors and microRNAs regulating CD73/NT5E, Front. Immunol., 9, 813, https://doi.org/10.3389/fimmu.2018.00813.
  32. 32. Chou, C.-W., Wang, C.-C., Wu, C.-P., Lin, Y.-J., Lee, Y.-C., Cheng, Y.-W., and Hsieh, C.-H. (2012) Tumor cycling hypoxia induces chemoresistance in glioblastoma multiforme by upregulating the expression and function of ABCB1, Neuro Oncol., 14, 1227-1238, https://doi.org/10.1093/neuonc/nos195.
  33. 33. Noman, M. Z., Desantis, G., Janji, B., Hasmim, M., Karray, S., Dessen, P., Bronte, V., and Chouaib, S. (2014) PD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activation, J. Exp. Med., 211, 781-790, https://doi.org/10.1084/jem.20131916.
  34. 34. Pires, I. M., Bencokova, Z., Milani, M., Folkes, L. K., Li, J. L., Stratford, M. R., Harris, A. L., and Hammond, E. M. (2010) Effects of acute versus chronic hypoxia on DNA damage responses and genomic instability, Cancer Res., 70, 925-935, https://doi.org/10.1158/0008-5472.CAN-09-2715.
  35. 35. Scanlon, S. E., and Glazer, P. M. (2015) Multifaceted control of DNA repair pathways by the hypoxic tumor microenvironment, DNA Repair, 32, 180-189, https://doi.org/10.1016/j.dnarep.2015.04.030.
  36. 36. Kilic, M., Kasperczyk, H., Fulda, S., and Debatin, K.-M. (2007) Role of hypoxia inducible factor-1 alpha in modulation of apoptosis resistance, Oncogene, 26, 2027-2038, https://doi.org/10.1038/sj.onc.1210008.
  37. 37. Hubbi, M. E., and Semenza, G. L. (2015) Regulation of cell proliferation by hypoxia-inducible factors, Am. J. Physiol. Cell Physiol., 309, C775-C782, https://doi.org/10.1152/ajpcell.00279.2015.
  38. 38. Hapke, R. Y., and Haake, S. M. (2020) Hypoxia-induced epithelial to mesenchymal transition in cancer, Cancer Lett., 487, 10-20, https://doi.org/10.1016/j.canlet.2020.05.012.
  39. 39. Abroun, S., Saki, N., Ahmadvand, M., Asghari, F., Salari, F., and Rahim, F. (2015) STATs: an old story, yet mesmerizing, Cell J.(Yakhteh), 17, 395-411, https://doi.org/10.22074/cellj.2015.1 .
  40. 40. Shao, H., Cheng, H. Y., Cook, R. G., and Tweardy, D. J. (2003) Identification and characterization of signal transducer and activator of transcription 3 recruitment sites within the epidermal growth factor receptor, Cancer Res., 63, 3923-3930.
  41. 41. Banerjee, K., and Resat, H. (2016) Constitutive activation of STAT3 in breast cancer cells: a review, Int. J. Cancer, 138, 2570-2578, https://doi.org/10.1002/ijc.29923.
  42. 42. Ni, Z., Lou, W., Leman, E. S., and Gao, A. C. (2000) Inhibition of constitutively activated Stat3 signaling pathway suppresses growth of prostate cancer cells, Cancer Res., 60, 1225-1228.
  43. 43. Kim, D. Y., Cha, S. T., Ahn, D. H., Kang, H. Y., Kwon, C. I., Ko, K. H., Hwang, S. G., Park, P. W., Rim, K. S., and Hong, S. P. (2009) STAT3 expression in gastric cancer indicates a poor prognosis, J. Gastroenterol. Hepatol., 24, 646-651, https://doi.org/10.1111/j.1440-1746.2008.05671.x.
  44. 44. Leeman, R. J., Lui, V. W. Y., and Grandis, J. R. (2006) STAT3 as a therapeutic target in head and neck cancer, Exp. Opin. Biol. Ther., 6, 231-241, https://doi.org/10.1517/14712598.6.3.231.
  45. 45. Chalikonda, G., Lee, H., Sheik, A., and Huh, Y. S. (2021) Targeting key transcriptional factor STAT3 in colorectal cancer, Mol. Cell Biochem., 476, 3219-3228, https://doi.org/10.1007/s11010-021-04156-8.
  46. 46. Wang, Y. T., Tang, F., Hu, X., Zheng, C. X., Gong, T. J., Zhou, Y., Luo, Y., and Min, L. (2020) Role of crosstalk between STAT3 and mTOR signaling in driving sensitivity to chemotherapy in osteosarcoma cell lines, IUBMB Life, 72, 2146-2153, https://doi.org/10.1002/iub.2349.
  47. 47. Dinarello, A., Betto, R. M., Diamante, L., Tesoriere, A., Ghirardo, R., Cioccarelli, C., Meneghetti, G., Peron, M., Laquatra, C., and Tiso, N. (2023) STAT3 and HIF1α cooperatively mediate the transcriptional and physiological responses to hypoxia, Cell Death Discov., 9, 226, https://doi.org/10.1038/s41420-023-01507-w.
  48. 48. He, H., Chen, W., Wang, X., Wang, C., Liu, F., Shen, Z., Xu, J., Gu, J., and Sun, Y. (2012) Snail is an independent prognostic predictor for progression and patient survival of gastric cancer, Cancer Sci., 103, 1296-1303, https://doi.org/10.1111/j.1349-7006.2012.02295.x.
  49. 49. Heebøll, S., Borre, M., Ottosen, P. D., Dyrskjøt, L., Ørntoft, T. F., and Tørring, N. (2009) Snail1 is over-expressed in prostate cancer, Apmis, 117, 196-204, https://doi.org/10.1111/j.1600-0463.2008.00007.x.
  50. 50. Muenst, S., Däster, S., Obermann, E., Droeser, R., Weber, W., Von Holzen, U., Gao, F., Viehl, C., Oertli, D., and Soysal, S. (2013) Nuclear expression of snail is an independent negative prognostic factor in human breast cancer, Dis. Mark., 35, 337-344, https://doi.org/10.1155/2013/902042.
  51. 51. Guo, M., Zhuang, H., Huang, J., Shao, X., Bai, N., Li, M., Niu, M., Wei, W., Sun, L., Li, Y., and Qiang, Z. (2023) LINC02870 facilitates SNAIL translation to promote hepatocellular carcinoma progression, Mol. Cell Biochem., 478, 1899-1914, https://doi.org/10.1007/s11010-022-04575-1.
  52. 52. Scherbakov, A. M., Andreeva, O. E., Shatskaya, V. A., and Krasil’nikov, M. A. (2012) The relationships between snail1 and estrogen receptor signaling in breast cancer cells, J. Cell Biochem., 113, 2147-2155, https://doi.org/10.1002/jcb.24087.
  53. 53. Lundgren, K., Nordenskjöld, B., and Landberg, G. (2009) Hypoxia, Snail and incomplete epithelial–mesenchymal transition in breast cancer, Br. J. Cancer, 101, 1769-1781, https://doi.org/10.1038/sj.bjc.6605369.
  54. 54. Saitoh, M., Endo, K., Furuya, S., Minami, M., Fukasawa, A., Imamura, T., and Miyazawa, K. (2016) STAT3 integrates cooperative Ras and TGF-β signals that induce Snail expression, Oncogene, 35, 1049-1057, https://doi.org/10.1038/onc.2015.161.
  55. 55. De Miguel, F., Lee, S. O., Onate, S. A., and Gao, A. C. (2003) Stat3 enhances transactivation of steroid hormone receptors, Nucl. Recept., 1, 3, https://doi.org/10.1186/1478-1336-1-3.
  56. 56. Proietti, C. J., Beguelin, W., Flaque, M. C., Cayrol, F., Rivas, M. A., Tkach, M., Charreau, E. H., Schillaci, R., and Elizalde, P. V. (2011) Novel role of signal transducer and activator of transcription 3 as a progesterone receptor coactivator in breast cancer, Steroids, 76, 381-392, https://doi.org/10.1016/j.steroids.2010.12.008.
  57. 57. Shahrzad, S., Bertrand, K., Minhas, K., and Coomber, B. (2007) Induction of DNA hypomethylation by tumor hypoxia, Epigenetics, 2, 119-125, https://doi.org/10.4161/epi.2.2.4613.
  58. 58. Watson, J. A., Watson, C. J., McCrohan, A.-M., Woodfine, K., Tosetto, M., McDaid, J., Gallagher, E., Betts, D., Baugh, J., and O’Sullivan, J. (2009) Generation of an epigenetic signature by chronic hypoxia in prostate cells, Hum. Mol. Genet., 18, 3594-3604, https://doi.org/10.1093/hmg/ddp307.
  59. 59. Yun, Z., and Glazer, P. M. (2015) Tumor suppressor p53 stole the AKT in hypoxia, J. Clin. Invest., 125, 2264-2266, https://doi.org/10.1172/JCI82058.
  60. 60. Leszczynska, K. B., Foskolou, I. P., Abraham, A. G., Anbalagan, S., Tellier, C., Haider, S., Span, P. N., O’Neill, E. E., Buffa, F. M., and Hammond, E. M. (2015) Hypoxia-induced p53 modulates both apoptosis and radiosensitivity via AKT, J. Clin. Invest., 125, 2385-2398, https://doi.org/10.1172/JCI80402.
  61. 61. Lu, T. X., and Rothenberg, M. E. (2018) MicroRNA, J. Allergy Clin. Immunol., 141, 1202-1207, https://doi.org/10.1016/j.jaci.2017.08.034.
  62. 62. Andreeva, O. E., Sorokin, D. V., Mikhaevich, E. I., Bure, I. V., Shchegolev, Y. Y., Nemtsova, M. V., Gudkova, M. V., Scherbakov, A. M., and Krasil’nikov, M. A. (2021) Towards unravelling the role of ERα-targeting miRNAs in the exosome-mediated transferring of the hormone resistance, Molecules, 26, 6661, https://doi.org/10.3390/molecules26216661.
  63. 63. Chung, C. D., Liao, J., Liu, B., Rao, X., Jay, P., Berta, P., and Shuai, K. (1997) Specific inhibition of Stat3 signal transduction by PIAS3, Science, 278, 1803-1805, https://doi.org/10.1126/science.278.5344.1803.
  64. 64. Jiang, M., Zhang, W., Zhang, R., Liu, P., Ye, Y., Yu, W., Guo, X., and Yu, J. (2020) Cancer exosome-derived miR-9 and miR-181a promote the development of early-stage MDSCs via interfering with SOCS3 and PIAS3 respectively in breast cancer, Oncogene, 39, 4681-4694, https://doi.org/10.1038/s41388-020-1322-4.
  65. 65. Strotbek, M., Schmid, S., Sanchez-Gonzalez, I., Boerries, M., Busch, H., and Olayioye, M. A. (2017) miR-181 elevates Akt signaling by co-targeting PHLPP2 and INPP4B phosphatases in luminal breast cancer, Int. J. Cancer, 140, 2310-2320, https://doi.org/10.1002/ijc.30661.
  66. 66. Kalinina, T., Kononchuk, V., Alekseenok, E., Obukhova, D., Sidorov, S., Strunkin, D., and Gulyaeva, L. (2021) Expression of estrogen receptor- and progesterone receptor-regulating MicroRNAs in breast cancer, Genes (Basel), 12, 582, https://doi.org/10.3390/genes12040582.
  67. 67. Benedetti, R., Papulino, C., Sgueglia, G., Chianese, U., De Marchi, T., Iovino, F., Rotili, D., Mai, A., Nimeus, E., Dell’ Aversana, C., and Altucci, L. (2021) Regulatory interplay between miR-181a-5p and estrogen receptor signaling cascade in breast cancer, Cancers (Basel), 13, 543, https://doi.org/10.3390/cancers13030543.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library