- PII
- S30345294S0320972525080065-1
- DOI
- 10.7868/S3034529425080065
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 90 / Issue number 8
- Pages
- 1148-1162
- Abstract
- The deficiency of glucocerebrosidase (GCase) encoded by the gene, leads to the autosomal recessive Gaucher disease and highly increased risk of developing Parkinson's disease (PD). In order to study the effect of GCase dysfunction on neurodegeneration, we evaluated the GCase activity, lysosphingolipid content, extent of dopaminergic neuron degeneration in the substantia nigra (SN), and levels of dopamine (DA) and total and oligomeric α-synuclein (α-Syn) in the brain of mice with the presymptomatic stage of parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in combination with a single injection of the GCase selective inhibitor conduritol-β-epoxide (CBE) (100 mg/kg body weight). A single injection of CBE led to a ~50% decrease in the GCase activity, significant increase in the lysosphingolipid content, and striatal accumulation of oligomeric α-Syn in the mouse brain. Assessment of the DA neuron degeneration in the SN 14 days after injection by immunohistochemical staining for tyrosine hydroxylase (TH) demonstrated a twice more pronounced reduction in the number of TH+ neurons in MPTP + CBE mice compared to MPTP only-treated animals (14% vs. 29%, respectively; < 0.0001). The double neurotoxic (MPTP+CBE) model was also characterized by a decrease in the DA content and more pronounced accumulation of total α-Syn in the striatum. Overall, we demonstrated that inhibition of the GCase activity leads to the α-Syn accumulation and further exacerbation of the MPTP-induced pathology. The described double toxic MPTP + CBE mouse model can be used for the screening of neuroprotective drugs in approaches aimed at increasing the GCase activity.
- Keywords
- болезнь Паркинсона глюкоцереброзидаза КБЭ МФТП мышиная модель
- Date of publication
- 15.07.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 85
References
- 1. Singleton, A. B., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., Hulihan, M., Peuralinna, T., Dutra, A., Nussbaum, R., Lincoln, S., Crawley, A., Hanson, M., Maraganore, D., Adler, C., Cookson, M. R., Muenter, M., Baptista, M., Miller, D., Blancato, J., Hardy, J., and Gwinn-Hardy, K. (2003) Alpha-synuclein locus triplication causes Parkinson’s disease, Science, 302, 841, https://doi.org/10.1126/science.1090278.
- 2. Miller, D. W., Hague, S. M., Clarimon, J., Baptista, M., Gwinn-Hardy, K., Cookson, M. R., and Singleton, A. B. (2004) Alpha-synuclein in blood and brain from familial Parkinson disease with SNCA locus triplication, Neurology, 62, 1835-1838, https://doi.org/10.1212/01.wnl.0000127517.33208.f4.
- 3. Kalia, L. V., Kalia, S. K., McLean, P. J., Lozano, A. M., and Lang, A. E. (2013) α-Synuclein oligomers and clinical implications for Parkinson disease, Ann. Neurol., 73, 155-169, https://doi.org/10.1002/ana.23746.
- 4. Tabrizi, S. J., Orth, M., Wilkinson, J. M., Taanman, J. W., Warner, T. T., Cooper, J. M., and Schapira, A. H. (2000) Expression of mutant alpha-synuclein causes increased susceptibility to dopamine toxicity, Hum. Mol. Genet., 9, 2683-2689, https://doi.org/10.1093/hmg/9.18.2683.
- 5. Murugesan, V., Chuang, W. L., Liu, J., Lischuk, A., Kacena, K., Lin, H., Pastores, G. M., Yang, R., Keutzer, J., Zhang, K., and Mistry, P. K. (2016) Glucosylsphingosine is a key biomarker of Gaucher disease, Am. J. Hematol., 91, 1082-1089, https://doi.org/10.1002/ajh.24491.
- 6. Polo, G., Burlina, A. P., Ranieri, E., Colucci, F., Rubert, L., Pascarella, A., Duro, G., Tummolo, A., Padoan, A., Plebani, M., and Burlina, A. B. (2019) Plasma and dried blood spot lysosphingolipids for the diagnosis of different sphingolipidoses: a comparative study, Clin. Chem. Lab. Med., 57, 1863-1874, https://doi.org/10.1515/cclm-2018-1301.
- 7. Sidransky, E., Nalls, M. A., Aasly, J. O., Aharon-Peretz, J., Annesi, G., Barbosa, E. R., Bar-Shira, A., Berg, D., Bras, J., Brice, A., Chen, C. M., Clark, L. N., Condroyer, C., De Marco, E. V., Dürr, A., Eblan, M. J., Fahn, S., Farrer, M. J., Fung, H. C., Gan-Or, Z., Gasser, T., Gershoni-Baruch, R., Giladi, N., Griffith, A., Gurevich, T., Januario, C., Kropp, P., Lang, A. E., Lee-Chen, G. J., Lesage, S., Marder, K., Mata, I. F., Mirelman, A., Mitsui, J., Mizuta, I., Nicoletti, G., Oliveira, C., Ottman, R., Orr-Urtreger, A., Pereira, L. V., Quattrone, A., Rogaeva, E., Rolfs, A., Rosenbaum, H., Rozenberg, R., Samii, A., Samaddar, T., Schulte, C., Sharma, M., Singleton, A., Spitz, M., Tan, E. K., Tayebi, N., Toda, T., Troiano, A. R., Tsuji, S., Wittstock, M., Wolfsberg, T. G., Wu, Y. R., Zabetian, C. P., Zhao, Y., and Ziegler, S. G. (2009) Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease, N. Engl. J. Med., 361, 1651-1661, https://doi.org/10.1056/NEJMoa0901281.
- 8. Emelyanov, A. K., Usenko, T. S., Tesson, C., Senkevich, K. A., Nikolaev, M. A., Miliukhina, I. V., Kopytova, A. E., Timofeeva, A. A., Yakimovsky, A. F., Lesage, S., Brice, A., and Pchelina, S. N. (2018) Mutation analysis of Parkinson’s disease genes in a Russian data set, Neurobiol. Aging, 71, 267.e7-267.e10, https://doi.org/10.1016/j.neurobiolaging.2018.06.027.
- 9. Gan-Or, Z., Amshalom, I., Kilarski, L. L., Bar-Shira, A., Gana-Weisz, M., Mirelman, A., Marder, K., Bressman, S., Giladi, N., and Orr-Urtreger, A. (2015) Differential effects of severe vs mild GBA mutations on Parkinson disease, Neurology, 84, 880-887, https://doi.org/10.1212/WNL.0000000000001315.
- 10. Alcalay, R. N., Levy, O. A., Waters, C. C., Fahn, S., Ford, B., Kuo, S. H., Mazzoni, P., Pauciulo, M. W., Nichols, W. C., Gan-Or, Z., Rouleau, G. A., Chung, W. K., Wolf, P., Oliva, P., Keutzer, J., Marder, K., and Zhang, X. (2015) Glucocerebrosidase activity in Parkinson’s disease with and without GBA mutations, Brain, 138, 2648-2658, https://doi.org/10.1093/brain/awv179.
- 11. Guedes, L. C., Chan, R. B., Gomes, M. A., Conceição, V. A., Machado, R. B., Soares, T., Xu, Y., Gaspar, P., Carriço, J. A., Alcalay, R. N., Ferreira, J. J., Outeiro, T. F., and Miltenberger-Miltenyi, G. (2017) Serum lipid alterations in GBA-associated Parkinson’s disease, Parkinsonism Relat. Disord., 44, 58-65, https://doi.org/10.1016/j.parkreldis.2017.08.026.
- 12. Pchelina, S., Baydakova, G., Nikolaev, M., Senkevich, K., Emelyanov, A., Kopytova, A., Miliukhina, I., Yakimovskii, A., Timofeeva, A., Berkovich, O., Fedotova, E., Illarioshkin, S., and Zakharova, E. (2018) Blood lysosphingolipids accumulation in patients with parkinson’s disease with glucocerebrosidase 1 mutations, Mov. Disord., 33, 1325-1330, https://doi.org/10.1002/mds.27393.
- 13. Pchelina, S., Emelyanov, A., Baydakova, G., Andoskin, P., Senkevich, K., Nikolaev, M., Miliukhina, I., Yakimovskii, A., Timofeeva, A., Fedotova, E., Abramycheva, N., Usenko, T., Kulabukhova, D., Lavrinova, A., Kopytova, A., Garaeva, L., Nuzhnyi, E., Illarioshkin, S., and Zakharova, E. (2017) Oligomeric α-synuclein and glucocerebro-sidase activity levels in GBA-associated Parkinson’s disease, Neurosci. Lett., 636, 70-76, https://doi.org/10.1016/j.neulet.2016.10.039.
- 14. Kopytova, A. E., Usenko, T. S., Baydakova, G. V., Nikolaev, M. A., Senkevich, K. A., Izyumchenko, A. D., Tyurin, A. A., Miliukhina, I. V., Emelyanov, A. K., Zakharova, E. Y., and Pchelina, S. N. (2022) Could blood hexosylsphin-gosine be a marker for Parkinson’s disease linked with GBA1 mutations? Mov. Disord., 37, 1779-1781, https://doi.org/10.1002/mds.29132.
- 15. Nuzhnyi, E., Emelyanov, A., Boukina, T., Usenko, T., Yakimovskii, A., Zakharova, E., and Pchelina, S. (2015) Plasma oligomeric alpha-synuclein is associated with glucocerebrosidase activity in Gaucher disease, Mov. Disord., 30, 989-991, https://doi.org/10.1002/mds.26200.
- 16. Pchelina, S. N., Nuzhnyi, E. P., Emelyanov, A. K., Boukina, T. M., Usenko, T. S., Nikolaev, M. A., Salogub, G. N., Yakimovskii, A. F., and Zakharova, E. Y. (2014) Increased plasma oligomeric alpha-synuclein in patients with lysosomal storage diseases, Neurosci. Lett., 583, 188-193, https://doi.org/10.1016/j.neulet.2014. 09.041.
- 17. Avenali, M., Cerri, S., Ongari, G., Ghezzi, C., Pacchetti, C., Tassorelli, C., Valente, E. M., and Blandini F. (2021) Profiling the biochemical signature of GBA-related Parkinson’s disease in peripheral blood mononuclear cells, Mov. Disord., 36, 1267-1272, https://doi.org/10.1002/mds.28496.
- 18. Emelyanov, A., Usenko, T., Nikolaev, M., Senkevich, K., Kulabukhova, D., Lavrinova, A., Andoskin, P., Miliukhina, I., and Pchelina, S. (2021) Increased α-synuclein level in CD45+ blood cells in asymptomatic carriers of GBA mutations, Mov. Disord., 36, 1997-1998, https://doi.org/10.1002/mds.28688.
- 19. Fernandes, H. J., Hartfield, E. M., Christian, H. C., Emmanoulidou, E., Zheng, Y., Booth, H., Bogetofte, H., Lang, C., Ryan, B. J., Sardi, S. P., Badger, J,, Vowles, J., Evetts, S., Tofaris, G. K., Vekrellis, K., Talbot, K., Hu, M. T., James, W., Cowley, S. A., and Wade-Martins, R. (2016) ER stress and autophagic perturbations lead to elevated extracellular α-synuclein in GBA-N370S Parkinson’s iPSC-derived dopamine neurons, Stem Cell Rep., 6, 342-356, https://doi.org/10.1016/j.stemcr.2016.01.013.
- 20. Fishbein, I., Kuo, Y. M., Giasson, B. I., and Nussbaum, R. L. (2014) Augmentation of phenotype in a transgenic Parkinson mouse heterozygous for a Gaucher mutation, Brain, 137, 3235-3247, https://doi.org/10.1093/brain/awu291.
- 21. Yun, S. P., Kim, D., Kim, S., Kim, S., Karuppagounder, S. S., Kwon, S. H., Lee, S., Kam, T. I., Lee, S., Ham, S., Park, J. H., Dawson, V. L., Dawson, T. M., Lee, Y., and Ko, H. S. (2018) α-Synuclein accumulation and GBA deficiency due to L444P GBA mutation contributes to MPTP-induced parkinsonism, Mol. Neurodegener., 13, 1, https://doi.org/10.1186/s13024-017-0233-5.
- 22. Schneider, J., Anderson, D., and Decamp, E. (2008) Neuropathology of Parkinson’s disease, Parkinson’s Dis., 3, 87-104, https://doi.org/10.1016/B978-0-12-374028-1.00003-8.
- 23. Mus, L., Siani, F., Giuliano, C., Ghezzi, C., Cerri, S., and Blandini, F. (2019) Development and biochemical characterization of a mouse model of Parkinson’s disease bearing defective glucocerebrosidase activity, Neurobiol. Dis., 124, 289-296, https://doi.org/10.1016/j.nbd.2018.12.001.
- 24. Manning-Boğ, A. B., Schüle, B., and Langston, J. W. (2009) Alpha-synuclein-glucocerebrosidase interactions in pharmacological Gaucher models: a biological link between Gaucher disease and parkinsonism, Neurotoxicology, 30, 1127-1132, https://doi.org/10.1016/j.neuro.2009.06.009.
- 25. Prence, E. M., Chaturvedi, P., and Newburg, D. S. (1996) In vitro accumulation of glucocerebroside in neuroblastoma cells: a model for study of Gaucher disease pathobiology, J. Neurosci. Res., 43, 365-371, https://doi.org/10.1002/ (SICI)1097-4547(19960201)43:33.0.CO;2-4.
- 26. Kanfer, J. N., Legler, G., Sullivan, J., Raghavan, S. S., and Mumford, RA. (1975) The Gaucher mouse, Biochem. Biophys. Res. Commun., 67, 85-90, https://doi.org/10.1016/0006-291x (75)90286-7.
- 27. Farfel-Becker, T., Vitner, E. B., and Futerman, A. H. (2011) Animal models for Gaucher disease research, Dis. Model. Mech., 4, 746-752, https://doi.org/10.1242/dmm.008185.
- 28. Klein, A. D., Ferreira, N. S., Ben-Dor, S., Duan, J., Hardy, J., Cox, T. M., Merrill, A. H. Jr., and Futerman, A. H. (2016) Identification of modifier genes in a mouse model of Gaucher disease, Cell Rep., 16, 2546-2553, https://doi.org/10.1016/j.celrep.2016.07.085.
- 29. Vardi, A., Zigdon, H., Meshcheriakova, A., Klein, A. D., Yaacobi, C., Eilam, R., Kenwood, B. M., Rahim, A. A., Massaro, G., Merrill, A. H. Jr, Vitner, E. B., and Futerman, A. H. (2016) Delineating pathological pathways in a chemically induced mouse model of Gaucher disease, J. Pathol., 239, 496-509, https://doi.org/10.1002/path.4751.
- 30. Alieva, A. K., Filatova, E. V., Kolacheva, A. A., Rudenok, M. M., Slominsky, P. A., Ugrumov, M. V., and Shadrina, M. I. (2017) Transcriptome profile changes in mice with MPTP-induced early stages of Parkinson’s disease, Mol. Neurobiol., 54, 6775-6784, https://doi.org/10.1007/s12035-016-0190-y.
- 31. Alieva, A. K., Zyrin, V. S., Rudenok, M. M., Kolacheva, A. A., Shulskaya, M. V., Ugryumov, M. V., Slominsky, P. A., and Shadrina, M. I. (2018) Whole-transcriptome analysis of mouse models with MPTP-induced early stages of Parkinson’s disease reveals stage-specific response of transcriptome and a possible role of myelin-linked genes in neurodegeneration, Mol. Neurobiol., 55, 7229-7241, https://doi.org/10.1007/s12035-018-0907-1.
- 32. Lenihan, J. A., Saha, O., Heimer-McGinn, V., Cryan, J. F., Feng, G., and Young, P. W. (2017) Decreased anxiety-related behaviour but apparently unperturbed NUMB function in ligand of NUMB protein-X (LNX) 1/2 double knockout mice, Mol. Neurobiol., 54, 8090-8109, https://doi.org/10.1007/s12035-016-0261-0.
- 33. Ковалёв Г.И., Васильева Е.В., Салимов Р.М. (2019) Сравнение поведения мышей в тестах открытого поля, закрытого и приподнятого крестообразных лабиринтов с помощью факторного анализа, Журнал высш. нервн. деят. им. И.П. Павлова, 69, 123-130, https://doi.org/10.1134/S0044467719010064.
- 34. Polo, G., Burlina, A. P., Kolamunnage, T. B., Zampieri, M., Dionisi-Vici, C., Strisciuglio, P., Zaninotto, M., Plebani, M., and Burlina, A. B. (2017) Diagnosis of sphingolipidoses: a new simultaneous measurement of lysosphingolipids by LC-MS/MS, Clin. Chem. Lab. Med., 55, 403-414, https://doi.org/10.1515/cclm-2016-0340.
- 35. Kopytova, A. E., Rychkov, G. N., Cheblokov, A. A., Grigor’eva, E. V., Nikolaev, M. A., Yarkova, E. S., Sorogina, D. A., Ibatullin, F. M., Baydakova, G. V., Izyumchenko, A. D., Bogdanova, D. A., Boitsov, V. M., Rybakov, A. V., Miliukhina, I. V., Bezrukikh, V. A., Salogub, G. N., Zakharova, E. Y., Pchelina, S. N., and Emelyanov, A. K. (2023) Potential binding sites of pharmacological chaperone NCGC00241607 on mutant b-glucocerebrosidase and its efficacy on patient-derived cell cultures in Gaucher and Parkinson’s disease, Int. J. Mol. Sci., 24, 9105, https://doi.org/10.3390/ijms24109105.
- 36. Yang, L., and Beal, M. F. (2011) Determination of neurotransmitter levels in models of Parkinson’s disease by HPLC-ECD, Methods Mol. Biol., 793, 401-415, https://doi.org/10.1007/978-1-61779-328-8_27.
- 37. Gürtler, A., Kunz, N., Gomolka, M., Hornhardt, S., Friedl, A. A., McDonald, K., Kohn, J. E., and Posch, A. (2013) Stain-free technology as a normalization tool in Western blot analysis, Anal. Biochem., 433, 105-111, https://doi.org/10.1016/j.ab.2012.10.010.
- 38. Gilda, J. E., and Gomes, A. V. (2015) Western blotting using in-gel protein labeling as a normalization control: stain-free technology, Methods Mol. Biol., 1295, 381-391, https://doi.org/10.1007/978-1-4939-2550-6_27.
- 39. Gage, G. J., Kipke, D. R., and Shain, W. (2012) Whole animal perfusion fixation for rodents, J. Vis. Exp., 30, 3564, https://doi.org/10.3791/3564.
- 40. Gavid, M., Coulomb, L., Thomas, J., Aouimeur, I., Verhoeven, P., Mentek, M., Dumollard, J. M., Forest, F., Prades, J. M., Thuret, G., Gain, P., and He, Z. (2023) Technique of flat-mount immunostaining for mapping the olfactory epithelium and counting the olfactory sensory neurons, PLoS One, 18, e0280497, https://doi.org/10.1371/journal.pone.0280497.
- 41. Ugrumov, M. V., Khaindrava, V. G., Kozina, E. A., Kucheryanu, V. G., Bocharov, E. V., Kryzhanovsky, G. N., Kudrin, V. S., Narkevich, V. B., Klodt, P. M., Rayevsky, K. S., and Pronina, T. S. (2011) Modeling of presymp-tomatic and symptomatic stages of parkinsonism in mice, Neuroscience, 181, 175-188, https://doi.org/10.1016/j.neuroscience.2011.03.007.
- 42. Ohashi, S., Mori, A., Kurihara, N., Mitsumoto, Y., and Nakai, M. (2006) Age-related severity of dopaminergic neurodegeneration to MPTP neurotoxicity causes motor dysfunction in C57BL/6 mice, Neurosci. Lett., 401, 183-187, https://doi.org/10.1016/j.neulet.2006.03.017.
- 43. Rocha, E. M., Smith, G. A., Park, E., Cao, H., Brown, E., Hallett, P., and Isacson O. (2015) Progressive decline of glucocerebrosidase in aging and Parkinson’s disease, Ann. Clin. Transl. Neurol., 2, 433-438, https://doi.org/10.1002/acn3.177.
- 44. Papadopoulos, V. E., Nikolopoulou, G., Antoniadou, I., Karachaliou, A., Arianoglou, G., Emmanouilidou, E., Sardi, S. P., Stefanis, L., and Vekrellis, K. (2018) Modulation of b-glucocerebrosidase increases α-synuclein secretion and exosome release in mouse models of Parkinson’s disease, Hum. Mol. Genet., 27, 1696-1710, https://doi.org/10.1093/hmg/ddy075.
- 45. Fredriksen, K., Aivazidis, S., Sharma, K., Burbidge, K. J., Pitcairn, C., Zunke, F., Gelyana, E., and Mazzulli, J. R. (2021) Pathological α-syn aggregation is mediated by glycosphingolipid chain length and the physiological state of α-syn in vivo, Proc. Natl. Acad. Sci. USA, 118, e2108489118, https://doi.org/10.1073/pnas.2108489118.
- 46. Wang, R., Sun, H., Cao, Y., Zhang, Z., Chen, Y., Wang, X., Liu, L., Wu, J., Xu, H., Wu, D., Mu, C., Hao, Z., Qin, S., Ren, H., Han, J., Fang, M., and Wang, G. (2024) Glucosylceramide accumulation in microglia triggers STING-dependent neuroinflammation and neurodegeneration in mice, Sci. Signal., 17, eadk8249, https://doi.org/10.1126/scisignal.adk8249.
- 47. Migdalska-Richards, A., Daly, L., Bezard, E., and Schapira, A. H. (2016) Ambroxol effects in glucocerebrosidase and α-synuclein transgenic mice, Ann. Neurol., 80, 766-775, https://doi.org/10.1002/ana.24790.
- 48. Kim, D., Hwang, H., Choi, S., Kwon, S. H., Lee, S., Park, J. H., Kim, S., and Ko, H. S. (2018) D409H GBA1 mutation accelerates the progression of pathology in A53T α-synuclein transgenic mouse model, Acta Neuropathol. Commun., 6, 32, https://doi.org/10.1186/s40478-018-0538-9.
- 49. Rockenstein, E., Clarke, J., Viel, C., Panarello, N., Treleaven, C. M., Kim, C., Spencer, B., Adame, A., Park, H., Dodge, J. C., Cheng, S. H., Shihabuddin, L. S., Masliah, E., and Sardi, S. P. (2016) Glucocerebrosidase modulates cognitive and motor activities in murine models of Parkinson’s disease, Hum. Mol. Genet., 25, 2645-2660, https://doi.org/10.1093/hmg/ddw124.
- 50. Du, T. T., Wang, L., Duan, C. L., Lu, L. L., Zhang, J. L., Gao, G., Qiu, X. B., Wang, X. M., and Yang, H. (2015) GBA deficiency promotes SNCA/α-synuclein accumulation through autophagic inhibition by inactivated PPP2A, Autophagy, 11, 1803-1820, https://doi.org/10.1080/15548627.2015.1086055.
- 51. Kuo, S. H., Tasset, I., Cheng, M. M., Diaz, A., Pan, M. K., Lieberman, O. J., Hutten, S. J., Alcalay, R. N., Kim, S., Ximénez-Embún, P., Fan, L., Kim, D., Ko, H. S., Yacoubian, T., Kanter, E., Liu, L., Tang, G., Muñoz, J., Sardi, S. P., Li, A., Gan, L., Cuervo, A. M., and Sulzer, D. (2022) Mutant glucocerebrosidase impairs α-synuclein degradation by blockade of chaperone-mediated autophagy, Sci. Adv., 8, eabm6393, https://doi.org/10.1126/sciadv.abm6393.
- 52. Bogetofte, H., Ryan, B. J., Jensen, P., Schmidt, S. I., Vergoossen, D. L. E., Barnkob, M. B., Kiani, L. N., Chughtai, U., Heon-Roberts, R., Caiazza, M. C., McGuinness, W., Márquez-Gómez, R., Vowles, J., Bunn, F. S., Brandes, J., Kilfeather, P., Connor, J. P., Fernandes, H. J. R., Caffrey, T. M., Meyer, M., Cowley, S. A., Larsen, M. R., and Wade-Martins, R. (2023) Post-translational proteomics platform identifies neurite outgrowth impairments in Parkinson’s disease GBA-N370S dopamine neurons, Cell Rep., 42, 112180, https://doi.org/10.1016/j.celrep.2023.112180.
- 53. Usenko, T., Bezrukova, A., Rudenok, M. M., Basharova, K., Shadrina, M. I., Slominsky, P. A., Zakharova, E., and Pchelina, S. (2023) Whole transcriptome analysis of substantia nigra in mice with MPTP-induced parkinsonism bearing defective glucocerebrosidase activity, Int. J. Mol. Sci., 24, 12164, https://doi.org/10.3390/ijms241512164.
- 54. Zunke, F., Moise, A. C., Belur, N. R., Gelyana, E., Stojkovska, I., Dzaferbegovic, H., Toker, N. J., Jeon, S., Fredriksen, K., and Mazzulli, J. R. (2018) Reversible conformational conversion of α-synuclein into toxic assemblies by glucosylceramide, Neuron, 97, 92-107.e10, https://doi.org/10.1016/j.neuron.2017.12.012.
- 55. Taguchi, Y. V., Liu, J., Ruan, J., Pacheco, J., Zhang, X., Abbasi, J., Keutzer, J., Mistry, P. K., and Chandra, S. S. (2017) Glucosylsphingosine promotes α-synuclein pathology in mutant GBA-associated Parkinson’s disease, J. Neurosci., 37, 9617-9631, https://doi.org/10.1523/JNEUROSCI.1525-17.2017.
- 56. Mazzulli, J. R., Xu, Y. H., Sun, Y., Knight, A. L., McLean, P. J., Caldwell, G. A., Sidransky, E., Grabowski, G. A., and Krainc, D. (2011) Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies, Cell, 146, 37-52, https://doi.org/10.1016/j.cell.2011.06.001.
- 57. Noelker, C., Lu, L., Höllerhage, M., Vulinovic, F., Sturn, A., Roscher, R., Höglinger, G. U., Hirsch, E. C., Oertel, W. H., Alvarez-Fischer, D., and Andreas, H. (2015) Glucocerebrosidase deficiency and mitochondrial impairment in experimental Parkinson disease, J. Neurol. Sci., 356, 129-136, https://doi.org/10.1016/j.jns.2015.06.030.
- 58. Fernández-Irigoyen, J., Cartas-Cejudo, P., Iruarrizaga-Lejarreta, M., and Santamaría, E. (2021) Alteration in the cerebrospinal fluid lipidome in Parkinson’s disease: a post-mortem pilot study, Biomedicines, 9, 491, https://doi.org/10.3390/biomedicines9050491.
- 59. Galper, J., Dean, N. J., Pickford, R., Lewis, S. J. G., Halliday, G. M., Kim, W. S., and Dzamko, N. (2022) Lipid pathway dysfunction is prevalent in patients with Parkinson’s disease, Brain, 145, 3472-3487, https://doi.org/10.1093/brain/awac176.
- 60. Galvagnion, C., Marlet, F. R., Cerri, S., Schapira, A. H. V., Blandini, F., and Di Monte, D. A. (2022) Sphingolipid changes in Parkinson L444P GBA mutation fibroblasts promote α-synuclein aggregation, Brain, 145, 1038-1051, https://doi.org/10.1093/brain/awab371.
- 61. Usenko, T. S., Senkevich, K. A., Bezrukova, A. I., Baydakova, G. V., Basharova, K. S., Zhuravlev, A. S., Gracheva, E. V., Kudrevatykh, A. V., Miliukhina, I. V., Krasakov, I. V., Khublarova, L. A., Fursova, I. V., Zakharov, D. V., Timofeeva, A. A., Irishina, Y. A., Palchikova, E. I., Zalutskaya, N. M., Emelyanov, A. K., Zakharova, E. Y., and Pchelina, S. N. (2022) Impaired sphingolipid hydrolase activities in dementia with Lewy bodies and multiple system atrophy, Mol. Neurobiol., 59, 2277-2287, https://doi.org/10.1007/s12035-021-02688-0.