- PII
- S30345294S0320972525070105-1
- DOI
- 10.7868/S3034529425070105
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 90 / Issue number 7
- Pages
- 1018-1027
- Abstract
- This work demonstrates, for the first time, the capacity of Chlorella sorokiniana immobilized in alginate to produce hydrogen (H) over an extended period when cultivated under strictly photoautotropic conditions on complete mineral medium. In order to reduce photosynthetic activity, immobilized cells were subjected to a 30-minute pre-incubation period at a high light intensity of 1000 μmol photons m s. The ability to produce H was evaluated under illumination of 40 μmol/(m s). The culture not bubbled with argon produced H for 9 days; the total gas yield was 0.1 mol H/m. In an argon atmosphere, the release of H continued for 51 days, resulting in a total yield of 0.55 mol H/m. The immobilized culture was capable of H production at 16% O in the gas phase, which may be due to the effects of photoinhibition and activation of oxygen uptake pathways in mitochondria and chloroplast. Analysis of the functioning of the electron-transport chain in microalgae cells revealed a decrease in the rate of electron transport, an increase in the size of the PSII antenna and the development of non-photochemical quenching processes, while the activity of PSII remained moderately high (Fv/Fm = 0.4–0.6). Inhibitor analysis using 10 M DCMU demonstrated that the contribution of PSII to the hydrogenase reaction increased from 30% on the first day of the experiment to 50% by the fourth day. The addition of 10 M DBMIB led to a 90% reduction in the rate of H formation on both day 1 and day 4.
- Keywords
- зелёные микроводоросли первичные реакции фотосинтеза фотообразование водорода фотоингибирование гидрогеназа
- Date of publication
- 04.02.2026
- Year of publication
- 2026
- Number of purchasers
- 0
- Views
- 57
References
- 1. Kalamaras, C. M., and Efstathiou, A. M. (2013) Hydrogen production technologies: current state and future developments, Conf. Papers Energy, 6, 1-9, https://doi.org/10.1155/2013/690627.
- 2. Kosourov, S., Böhm, M., Senger, M., Berggren, G., Stensjö, K., Mamedov, F., Lindblad, P., and Allahverdiyeva, Y. (2021) Photosynthetic hydrogen production: Novel protocols, promising engineering approaches and application of semisynthetic hydrogenases, Physiol. Plant., 173, 555-567, https://doi.org/10.1111/ppl.13428.
- 3. Tsygankov, A. A. (2007) Biological generation of hydrogen, Russ. J. Gen. Chem., 77, 685-693, https://doi.org/10.1134/S1070363207040317.
- 4. Antal, T. K., Krendeleva, T. E., and Rubin, A. B. (2011) Acclimation of green algae to sulfur deficiency: underlying mechanisms and application for hydrogen production, Appl. Microbiol. Biotechnol., 89, 3-15, https://doi.org/10.1007/s00253-010-2879-6.
- 5. Volgusheva, A., Styring, S., and Mamedov, F. (2013) Increased photosystem II stability promotes H2 production in sulfur-deprived Chlamydomonas reinhardtii, Proc. Natl. Acad. Sci. USA, 110, 7223-7228, https://doi.org/10.1073/pnas.1220645110.
- 6. Antal, T., Petrova, E., Slepnyova, V., Kukarskikh, G., Volgusheva, A., Dubini, A., and Rubin, A. B. (2020) Photosynthetic hydrogen production as acclimation mechanism in nutrient-deprived Chlamydomonas, Algal Res., 49, 101951, https://doi.org/10.1016/j.algal.2020.101951.
- 7. Liran, O., Semyatich, R., Milrad, Y., Eilenberg, H., Weiner, I., and Yacoby, I. (2016) Microoxic niches within the thylakoid stroma of air-grown Chlamydomonas reinhardtii protect [FeFe]-hydrogenase and support hydrogen production under fully aerobic environment, Plant Physiol., 172, 264-271, https://doi.org/10.1104/pp.16.01063.
- 8. Kosourov, S., Jokel, M., Aro, E. M., Allahverdiyeva, Y. (2018) A new approach for sustained and efficient H2 photoproduction by Chlamydomonas reinhardtii, Energy Environ. Sci., 11, 1431-1436, https://doi.org/10.1039/C8EE00054A.
- 9. Milrad, Y., Schweitzer, S., Feldman, Y., and Yacoby, I. (2018) Green algal hydrogenase activity is outcompeted by carbon fixation before inactivation by oxygen takes place, Plant Physiol., 177, 918-926, https://doi.org/10.1104/pp.18.00229.
- 10. Hwang, J. H., Kim, H. C., Choi, J. A., Abou-Shanab, R. A. I., Dempsey, B. A., Regan, J. M., Kim, J. R., Song, H., Nam, I. H., Kim, S. N., Lee, W., Park, D., Kim, Y., Choi, J., Ji, M. K., Jung, W., and Jeon, B. H. (2014) Photoautotrophic hydrogen production by eukaryotic microalgae under aerobic conditions, Nat. Commun., 5, 3234, https://doi.org/10.1038/ncomms4234.
- 11. Melis, A., Zhang, L., Forestier, M., Ghirardi, M. L., and Seibert, M. (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii, Plant Physiol., 122, 127-136, https://doi.org/10.1104/pp.122.1.127.
- 12. Tsygankov, A. (2002) Hydrogen photoproduction under continuous illumination by sulfur-deprived, synchronous Chlamydomonas reinhardtii cultures, Int. J. Hydrog. Energy, 27, 1239-1244, https://doi.org/10.1016/S0360-3199 (02)00108-8.
- 13. Philipps, G., Happe, T., and Hemschemeier, A. (2012) Nitrogen deprivation results in photosynthetic hydrogen production in Chlamydomonas reinhardtii, Planta, 235, 729-745, https://doi.org/10.1007/s00425-011-1537-2.
- 14. He, M., Li, L., Zhang, L., and Liu, J. (2012) The enhancement of hydrogen photoproduction in Chlorella protothecoides exposed to nitrogen limitation and sulfur deprivation, Int. J. Hydrog. Energy, 37, 16903-16915, https://doi.org/10.1016/j.ijhydene.2012.08.121.
- 15. Batyrova, K. A., Tsygankov, A. A., and Kosourov, S. N. (2012) Sustained hydrogen photoproduction by phosphorus-deprived Chlamydomonas reinhardtii cultures, Int. J. Hydrog. Energy, 37, 8834-8839, https://doi.org/10.1016/j.ijhydene.2012.01.068.
- 16. Papazi, A., Gjindali, A. I., Kastanaki, E., Assimakopoulos, K., Stamatakis, K., and Kotzabasis, K. (2014) Potassium deficiency, a “smart” cellular switch for sustained high yield hydrogen production by the green alga Scenedesmus obliquus, Int. J. Hydrog. Energy, 39, 19452-19464, https://doi.org/10.1016/j.ijhydene.2014.09.096.
- 17. Batyrova, K., Gavrisheva, A., Ivanova, E., Liu, J., and Tsygankov, A. (2015) Sustainable hydrogen photoproduction by phosphorus-deprived marine green microalgae Chlorella sp., Int. J. Mol. Sci., 16, 2705-2716, https://doi.org/10.3390/ijms16022705.
- 18. Krishna, P. S., Styring, S., Mamedov, F. (2019) Photosystem ratio imbalance promotes direct sustainable H2 production in Chlamydomonas reinhardtii, Green Chem., 21, 4683-4690, https://doi.org/10.1039/C9GC01416K.
- 19. Khosravitabar, F., and Mamedov, F. (2023) Partial inhibition of the inter-photosystem electron transfer at cytochrome b6f complex promotes periodic surges of hydrogen evolution in Chlamydomonas reinhardtii, Int. J. Hydrog. Energy, 48, 36314-36326, https://doi.org/10.1016/j.ijhydene.2023.06.050.
- 20. Kosourov, S. N., and Seibert, M. (2009) Hydrogen photoproduction by nutrient-deprived Chlamydomonas reinhardtii cells immobilized within thin alginate films under aerobic and anaerobic conditions, Biotech Bioeng., 102, 50-58, https://doi.org/10.1002/bit.22050.
- 21. Volgusheva, A., Kosourov, S., Lynch, F., and Allahverdiyeva, Y. (2019) Immobilized heterocysts as microbial factories for sustainable nitrogen fixation, J. Biotechnol., 306, 100016, https://doi.org/10.1016/j.btecx.2020.100016.
- 22. Tsygankov, A., and Kosourov, S. (2014) Immobilization of photosynthetic microorganisms for efficient hydrogen production, In Microbial BioEnergy: Hydrogen Production (Zannoni, D., and De Philippis, R., eds), Dordrecht, Springer Netherlands, p. 321-347, https://doi.org/10.1007/978-94-017-8554-9_14.
- 23. Tsygankov, A., Kosourov, S., Tolstygina, I., Ghirardi, M., and Seibert, M. (2006) Hydrogen production by sulfurdeprived Chlamydomonas reinhardtii under photoautotrophic conditions, Int. J. Hydrog. Energy, 31, 1574-1584, https://doi.org/10.1016/j.ijhydene.2006.06.024.
- 24. Tolstygina, I. V., Antal, T. K., Kosourov, S. N., Krendeleva, T. E., Rubin, A. B., and Tsygankov, A. A. (2009) Hydrogen production by photoautotrophic sulfur deprived Chlamydomonas reinhardtii pre-grown and incubated under high light, Biotechnol. Bioeng., 102, 1055-1061, https://doi.org/10.1002/bit.22148.
- 25. Solovchenko, A., Pogosyan, S., Chivkunova, O., Selyakh, I., Semenova, L., Voronova, E., et al. (2014) Phycoremediation of alcohol distillery wastewater with a novel Chlorella sorokiniana strain cultivated in a photobioreactor monitored on-line via chlorophyll fluorescence, Algal Res., 6, 234-241, https://doi.org/10.1016/j.algal.2014.01.002.
- 26. Harris, E. H. (1989) The Chlamydomonas sourcebook: A Comprehensive Guide to Biology and Laboratory Use, San Diego, Academic Press, 780 pp.
- 27. Lichtenthaler, H. K. (1987) Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes, in Methods in Enzymology, Elsevier, p. 350-382.
- 28. Gfeller, R. P., and Gibbs, M. (1984) Fermentative metabolism of Chlamydomonas reinhardtii: I. Analysis of Fermentative Products from Starch in Dark and Light, Plant Physiol., 75, 212-218, https://doi.org/10.1104/pp.75.1.212.
- 29. Lazár, D. (2006) The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light, Funct. Plant Biol., 33, 9-30, https://doi.org/10.1071/FP05095.
- 30. Strasser, R. J., Tsimilli-Michael, M., Qiang, S., and Goltsev, V. (2010) Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis, Biochim. Biophys. Acta, 1797, 1313-1326, https://doi.org/10.1016/j.bbabio. 2010.03.008.
- 31. Nagy, V., Podmaniczki, A., Vidal-Meireles, A., Tengölics, R., Kovács, L., Rákhely, G., Scoma, A., and Tóth, S. Z. (2018) Water-splitting-based, sustainable and efficient H2 production in green algae as achieved by substrate limitation of the Calvin-Benson-Bassham cycle, Biotechnol. Biofuels, 11, 69, https://doi.org/10.1186/s13068-018-1069-0.
- 32. Markov, S., Eivazova, E., and Greenwood, J. (2006) Photostimulation of H2 production in the green alga Chlamydomonas reinhardtii upon photoinhibition of its O2-evolving system, Int. J. Hydrog. Energy, 31, 1314-1317, https://doi.org/10.1016/j.ijhydene.2005.11.017.
- 33. Petrova, E. V., Kukarskikh, G. P., Krendeleva, T. E., and Antal, T. K. (2020) The mechanisms and role of photosynthetic hydrogen production by green microalgae, Microbiology, 89, 251-265, https://doi.org/10.1134/S0026261720030169.