RAS BiologyБиохимия Biochemistry

  • ISSN (Print) 0320-9725
  • ISSN (Online) 3034-5294

THE RELATIONSHIP BETWEEN PHOTOSYSTEM II REGULATION AND HYDROGEN PRODUCTION IN Chlamydomonas reinhardtii UNDER NITROGEN OR SULFUR DEPRIVATION

PII
S30345294S0320972525070091-1
DOI
10.7868/S3034529425070091
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 90 / Issue number 7
Pages
1004-1017
Abstract
Some microalgae are capable of light-dependent hydrogen production after a period of anaerobic adaptation, thus performing biophotolysis of water. The hydrogen production rate at the initial moment reaches the maximum rate of photosynthesis. However, this process is short-lived: the oxygen released during photosynthesis quickly inactivates the key enzyme of biophotolysis, hydrogenase, and inhibits its expression. Approaches have been developed to achieve sustained hydrogen production by microalgae. The most studied are approaches based on transferring microalgae to nutrient-deficient conditions. However, it is known that hydrogen production under nutrient deficiency is always accompanied by a decrease in the activity of photosystem II (PSII). Several mechanisms of PSII activity suppression have been described in the literature, and there is no consensus on which mechanism is the determining one. The aim of this work was to test the hypothesis that the implementation of a particular mechanism of PSII suppression depends not only on the type of stress but also on the growth conditions. For this purpose, a photoautotrophic culture of the microalga Chlamydomonas reinhardtii was grown under nitrogen or sulfur deficiency under different light regimes, and the implementation of the following mechanisms of PSII activity suppression was analyzed: over-reduction of the plastoquinone pool (coupled with over-reduction of the entire photosynthetic electron transport chain), decoupling of PSII (based on the kinetics of ascorbate accumulation and the JIP test), the violaxanthin cycle, anaerobic stress associated with the creation of a reducing redox potential of the culture suspension. It was found that the key mechanism determining hydrogen production is over-reduction of the plastoquinone pool. Other mechanisms are also implemented under various conditions but do not show a clear correlation with hydrogen production. The results obtained indicate that stress caused by starvation of cultures is a convenient approach for studying hydrogen production by microalgae, but due to the low activity of PSII, it is impractical. New approaches are required to create industrial systems based on microalgae, allowing the full realization of the photosynthetic potential of microalgae.
Keywords
фотовыделение водорода микроводорослями фотосистема 2 фотоавтотрофные культуры Chlamydomonas reinhardtii недостаток серы недостаток азота
Date of publication
04.02.2026
Year of publication
2026
Number of purchasers
0
Views
67

References

  1. 1. Sakurai, H., and Tsygankov, A. A. (2019) Photobiological biohydrogen production, in Second and Third Generation of Feedstocks, Elsevier, pp. 437-467, https://doi.org/10.1016/B978-0-12-815162-4.00016-1.
  2. 2. Petrova, E., Kukarskikh, G., Krendeleva, T., and Antal, T. (2020) The mechanisms and role of photosynthetic hydrogen production by green microalgae, Microbiology, 89, 251-265, https://doi.org/10.1134/S0026261720030169.
  3. 3. Touloupakis, E., Faraloni, C., Silva Benavides, A. M., and Torzillo, G. (2021) Recent achievements in microalgal photobiological hydrogen production, Energies, 14, 7170, https://doi.org/10.3390/en14217170.
  4. 4. Grechanik, V., and Tsygankov, A. (2022) The relationship between photosystem II regulation and light-dependent hydrogen production by microalgae, Biophys. Rev., 14, 893-904, https://doi.org/10.1007/s12551-022-00977-z.
  5. 5. Grechanik, V., and Tsygankov, A. (2021) Recent advances in microalgal hydrogen production, Photosynthesis: Molecular Approaches to Solar Energy Conversion, pp. 589-605, https://doi.org/10.1007/978-3-030-67407-6_22.
  6. 6. Kosourov, S., Tsygankov, A., Seibert, M., and Ghirardi, M. L. (2002) Sustained hydrogen photoproduction by Chlamydomonas reinhardtii: effects of culture parameters, Biotechnol. Bioeng., 78, 731-740, https://doi.org/10.1002/bit.10254.
  7. 7. Melis, A., Zhang, L. P., Forestier, M., Ghirardi, M. L., and Seibert, M. (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii, Plant Physiol., 122, 127-135, https://doi.org/10.1104/pp.122.1.127.
  8. 8. Philipps, G., Happe, T., and Hemschemeier, A. (2012) Nitrogen deprivation results in photosynthetic hydrogen production in Chlamydomonas reinhardtii, Planta, 235, 729-745, https://doi.org/10.1007/s00425-011-1537-2.
  9. 9. Batyrova, K. A., Tsygankov, A. A., and Kosourov, S. N. (2012) Sustained hydrogen photoproduction by phosphorus-deprived Chlamydomonas reinhardtii cultures, Int. J. Hydrogen Energy, 37, 8834-8839, https://doi.org/10.1016/j.ijhydene.2012.01.068.
  10. 10. Grechanik, V., Naidov, I., Bolshakov, M., and Tsygankov, A. (2021) Photoautotrophic hydrogen production by nitrogen-deprived Chlamydomonas reinhardtii cultures, Int. J. Hydrogen Energy, 46, 3565-3575, https://doi.org/10.1016/j.ijhydene.2020.10.215.
  11. 11. Grechanik, V., Romanova, A., Naydov, I., and Tsygankov, A. (2020) Photoautotrophic cultures of Chlamydomonas reinhardtii: sulfur deficiency, anoxia, and hydrogen production, Photosynth. Res., 143, 275-286, https://doi.org/10.1007/s11120-019-00701-1.
  12. 12. Wykoff, D. D., Davies, J. P., Melis, A., and Grossman, A. R. (1998) The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii, Plant Physiol., 117, 129-139, https://doi.org/10.1104/pp.117.1.129.
  13. 13. Antal, T. K., Krendeleva, T. E., Laurinavichene, T. V., Makarova, V. V., Ghirardi, M. L., Rubin, A. B., Tsygankov, A. A., and Seibert, M. (2003) The dependence of algal H2 production on Photosystem II and O2 consumption activities in sulfur-deprived Chlamydomonas reinhardtii cells, Biochim. Biophys. Acta, 1607, 153-160, https://doi.org/10.1016/j.bbabio.2003.09.008.
  14. 14. Volgusheva, A., Zagidullin, V., Antal, T., Korvatovsky, B., Krendeleva, T., Paschenko, V., and Rubin, A. (2007) Examination of chlorophyll fluorescence decay kinetics in sulfur deprived algae Chlamydomonas reinhardtii, Biochim. Biophys. Acta, 1767, 559-564, https://doi.org/10.1016/j.bbabio.2007.04.006.
  15. 15. Antal, T. K., Krendeleva, T. E., and Rubin, A. B. (2007) Study of photosystem 2 heterogeneity in the sulfur-deficient green alga Chlamydomonas reinhardtii, Photosynth. Res., 94, 22, https://doi.org/10.1007/s11120-007-9202-0.
  16. 16. Zhang, L., Happe, T., and Melis, A. (2002) Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga), Planta, 214, 552-561, https://doi.org/10.1007/s004250100660.
  17. 17. Nagy, V., Podmaniczki, A., Vidal-Meireles, A., Tengölics, R., Kovács, L., Rákhely, G., Scoma, A., and Tóth, S. Z. (2018) Water-splitting-based, sustainable and efficient H2 production in green algae as achieved by substrate limitation of the Calvin–Benson–Bassham cycle, Biotechnol. Biofuels, 11, 1-16, https://doi.org/10.1186/s13068018-1069-0.
  18. 18. Antal, T. K., Volgusheva, A. A., Kukarskih, G. P., Bulychev, A. A., Krendeleva, T. E., and Rubin, A. B. (2006) Effects of sulfur limitation on photosystem II functioning in Chlamydomonas reinhardtii as probed by chlorophyll a fluorescence, Physiol. Plantarum, 128, 360-367, https://doi.org/10.1111/j.1399-3054.2006.00734.x.
  19. 19. Tsygankov, A. A., Kosourov, S. N., Tolstygina, I. V., Ghirardi, M. L., and Seibert, M. (2006) Hydrogen production by sulfur-deprived Chlamydomonas reinhardtii under photoautotrophic conditions, Int. J. Hydrogen Energy, 31, 1574-1584, https://doi.org/10.1016/j.ijhydene.2006.06.024.
  20. 20. Kosourov, S., Patrusheva, E., Ghirardi, M. L., Seibert, M., and Tsygankov, A. (2007) A comparison of hydrogen photoproduction by sulfur-deprived Chlamydomonas reinhardtii under different growth conditions, J. Biotechnol., 128, 776-787, https://doi.org/10.1016/j.jbiotec.2006.12.025.
  21. 21. Gorman, D. S., and Levine, R. (1965) Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardi, Proc. Natl. Acad. Sci. USA, 54, 1665-1669, https://doi.org/10.1073/pnas.54.6.1665.
  22. 22. Sueoka, N., Chiang, K., and Kates, J. (1967) Deoxyribonucleic acid replication in meiosis of Chlamydomonas reinhardi: I. Isotopic transfer experiments with a strain producing eight zoospores, J. Mol. Biol., 25, 47-66, https://doi.org/10.1016/0022-2836 (67)90278-1.
  23. 23. Tsygankov, A. A., Laurinavichene, T. V., and Gogotov, I. N. (1994) Laboratory scale photobioreactor, Biotechnol. Techniq., 8, 575-578, https://doi.org/10.1007/BF00152149.
  24. 24. Laurinavichene, T. V., Tolstygina, I. V., Galiulina, R. R., Ghirardi, M. L., Seibert, M., and Tsygankov, A. A. (2002) Dilution methods to deprive Chlamydomonas reinhardtii cultures of sulfur for subsequent hydrogen photoproduction, Int. J. Hydrogen Energy, 27, 1245-1249, https://doi.org/10.1016/S0360-3199 (02)00101-5.
  25. 25. Goltsev, V., Kalaji, H., Paunov, M., Bąba, W., Horaczek, T., Mojski, J., Kociel, H., and Allakhverdiev, S. (2016) Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus, Russ. J. Plant Physiol., 63, 869-893, https://doi.org/10.1134/S1021443716050058.
  26. 26. Kalaji, H. M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I. A., Cetner, M. D., Łukasik, I., Goltsev, V., and Ladle, R. J. (2016) Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions, Acta Physiol. Plantarum, 38, 1-11, https://doi.org/10.1007/s11738-016-2113-y.
  27. 27. Kovács, L., Vidal-Meireles, A., Nagy, V., and Tóth, S. Z. (2016) Quantitative determination of ascorbate from the green alga Chlamydomonas reinhardtii by HPLC, Bioprotocol, 6, e2067-e2067, https://doi.org/10.21769/BioProtoc.2067.
  28. 28. Moskalenko, A., Toropygina, O., and Makhneva, Z. (1997) Behavior of carotenoids in Rhodospirillum rubrum cells under cultivation with diphenylamine [in Russian], Dokl. Akad. Nauk, 355, 259-261.
  29. 29. Harris, E. H. (1989) Chlamydomonas Sourcebook, Academic Press San Diego.
  30. 30. Gfeller, R. P., and Gibbs, M. (1984) Fermentative metabolism of Chlamydomonas reinhardtii: I. Analysis of fermentative products from starch in dark and light, Plant Physiol., 75, 212-218, https://doi.org/10.1104/pp.75.1.212.
  31. 31. Grechanik, V. I., Bol’shakov, M. A., and Tsygankov, A. A. (2022) Hydrogen production by CO2 deprived photoautotrophic Chlamydomonas reinhardtii cultures, Biochemistry (Moscow), 87, 1098-1108, https://doi.org/10.1134/S0006297922100030.
  32. 32. Nagy, V., Vidal‐Meireles, A., Tengölics, R., Rákhely, G., Garab, G., Kovács, L., and Tóth, S. Z. (2016) Ascorbate accumulation during sulphur deprivation and its effects on photosystem II activity and H2 production of the green alga Chlamydomonas reinhardtii, Plant Cell Environ., 39, 1460-1472, https://doi.org/10.1111/pce.12701.
  33. 33. Антал Т., Кренделева Т., Лауринавичене Т., Макарова В., Цыганков А., Сейберт М., и Рубин А. (2001) Связь активности фотосистемы 2 микроводорослей Chlamydomonas reinhardtii с выделением водорода при серном голодании, Докл. Акад. Наук, 381, 119.
  34. 34. Zhang, L. P., Happe, T., and Melis, A. (2002) Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga), Planta, 214, 552-561, https://doi.org/10.1007/s004250100660.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library