RAS BiologyБиохимия Biochemistry

  • ISSN (Print) 0320-9725
  • ISSN (Online) 3034-5294

EFFECT OF CULTIVATION CONDITIONS ON THE EXPRESSION OF THE Exiguobacterium sibiricum PROTEORHODOPSIN GENE

PII
S30345294S0320972525070088-1
DOI
10.7868/S3034529425070088
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 90 / Issue number 7
Pages
993-1003
Abstract
Recombinant proteorhodopsin ESR of the gram-positive bacterium Exiguobacterium sibiricum, isolated from permafrost deposits in northeastern Siberia, binds retinal and is a light-dependent proton pump, but nothing is known about its expression in natural conditions. In this work, expression of the esr gene in cultures of E. sibiricum grown under various conditions was studied by quantitative PCR. It has been established that cultivation on poor media at low temperatures contributes to a significant increase in the synthesis level of the corresponding mRNA. The data obtained are confirmed by the results of the analysis of the cells' membrane fraction using mass spectrometry. Also, at 10 °C, increased content of phytocandesaturases, which are involved in the biosynthesis of carotenoids, is observed. However, we were unable to detect the presence of a functional retinal-containing protein in the cells, presumably due to the lack of an enzymatic retinal synthesis system in E. sibiricum. The possible functions of ESR in E. sibiricum cells are discussed in connection with the characteristics of the bacterium's extreme habitat. The results of the work contribute to understanding of the molecular mechanisms of microbial adaptation to environmental conditions and the potential role of microbial rhodopsin in these processes.
Keywords
Exiguobacterium sibiricum многолетнемерзлые отложения микробные родопсины ретиналь каротиноиды
Date of publication
04.02.2026
Year of publication
2026
Number of purchasers
0
Views
83

References

  1. 1. Rozenberg, A., Inoue, K., Kandori, H., and Béjà, O. (2021) Microbial rhodopsins: the last two decades, Annu. Rev. Microbiol., 75, 427-447, https://doi.org/10.1146/annurev-micro-031721-020452.
  2. 2. Pinhassi, J., DeLong, E. F., Béjà, O., González, J. M., and Pedrós-Alió, C. (2016) Marine bacterial and archaeal ion-pumping rhodopsins: genetic diversity, physiology, and ecology, Microbiol. Mol. Biol. Rev., 80, 929-954, https://doi.org/10.1128/mmbr.00003-16.
  3. 3. Govorunova, E. G., Sineshchekov, O. A., Li, H., and Spudich, J. L. (2017) Microbial rhodopsins: diversity, mechanisms, and optogenetic applications, Annu. Rev. Biochem., 86, 845-872, https://doi.org/10.1146/annurev-biochem101910-144233.
  4. 4. Gordeliy, V., Kovalev, K., Bamberg, E., Rodriguez-Valera, F., Zinovev, E., Zabelskii, D., Alekseev, A., Rosselli, R., Gushchin, I., and Okhrimenko, I. (2022) Microbial rhodopsins, in Rhodopsin: Methods and Protocols (Gordeliy, V. ed) Springer US, New York, NY, pp. 1-52, https://doi.org/10.1007/978-1-0716-2329-9_1.
  5. 5. Brown, L. S. (2022) Light-driven proton transfers and proton transport by microbial rhodopsins – A biophysical perspective, Biochim. Biophys. Acta, 1864, 183867, https://doi.org/10.1016/j.bbamem.2022.183867.
  6. 6. Martinez, A., Bradley, A. S., Waldbauer, J. R., Summons, R. E., and DeLong, E. F. (2007) Proteorhodopsin photosystem gene expression enables photophosphorylation in a heterologous host, Proc. Nat. Acad. Sci. USA, 104, 5590-5595, https://doi.org/10.1073/pnas.0611470104.
  7. 7. Atamna-Ismaeel, N., Finkel, O. M., Glaser, F., Sharon, I., Schneider, R., Post, A. F., Spudich, J. L., von Mering, C., Vorholt, J. A., Iluz, D., Béjà, O., and Belkin, S. (2012) Microbial rhodopsins on leaf surfaces of terrestrial plants, Environ. Microbiol., 14, 140-146, https://doi.org/10.1111/j.1462-2920.2011.02554.x.
  8. 8. Béjà, O., Spudich, E. N., Spudich, J. L., Leclerc, M., and DeLong, E. F. (2001) Proteorhodopsin phototrophy in the ocean, Nature, 411, 786-789, https://doi.org/10.1038/35081051.
  9. 9. Atamna-Ismaeel, N., Sabehi, G., Sharon, I., Witzel, K.-P., Labrenz, M., Jürgens, K., Barkay, T., Stomp, M., Huisman, J., and Beja, O. (2008) Widespread distribution of proteorhodopsins in freshwater and brackish ecosystems, ISME J., 2, 656-662, https://doi.org/10.1038/ismej.2008.27.
  10. 10. Koh Eileen, Y., Atamna-Ismaeel, N., Martin, A., Cowie Rebecca, O. M., Beja, O., Davy Simon, K., Maas Elizabeth, W., and Ryan Ken, G. (2010) Proteorhodopsin-bearing bacteria in antarctic sea ice, Appl. Environ. Microbiol., 76, 5918-5925, https://doi.org/10.1128/AEM.00562-10.
  11. 11. Gómez-Consarnau, L., Akram, N., Lindell, K., Pedersen, A., Neutze, R., Milton, D. L., González, J. M., and Pinhassi, J. (2010) Proteorhodopsin phototrophy promotes survival of marine bacteria during starvation, PLOS Biol., 8, e1000358, https://doi.org/10.1371/journal.pbio.1000358.
  12. 12. Steindler, L., Schwalbach, M. S., Smith, D. P., Chan, F., and Giovannoni, S. J. (2011) Energy starved candidatus Pelagibacter ubique substitutes light-mediated ATP production for endogenous carbon respiration, PLoS One, 6, e19725, https://doi.org/10.1371/journal.pone.0019725.
  13. 13. DeLong, E. F., and Beja, O. (2010) The light-driven proton pump proteorhodopsin enhances bacterial survival during tough times, PLoS Biol., 8, e1000359, https://doi.org/10.1371/journal.pbio.1000359.
  14. 14. Gómez-Consarnau, L., Raven, J. A., Levine, N. M., Cutter, L. S., Wang, D., Seegers, B., Arístegui, J., Fuhrman, J. A., Gasol, J. M., and Sañudo-Wilhelmy, S. A. (2019) Microbial rhodopsins are major contributors to the solar energy captured in the sea, Sci. Adv., 5, eaaw8855, https://doi.org/10.1126/sciadv.aaw8855.
  15. 15. Finkel, O. M., Béjà, O., and Belkin, S. (2013) Global abundance of microbial rhodopsins, ISME J., 7, 448-451, https://doi.org/10.1038/ismej.2012.112.
  16. 16. Feng, S., Powell, S. M., Wilson, R., and Bowman, J. P. (2013) Light-stimulated growth of proteorhodopsin-bearing sea-ice psychrophile Psychroflexus torquis is salinity dependent, ISME J., 7, 2206-2213.
  17. 17. Kondo, K., Ohtake, R., Nakano, S., Terashima, M., Kojima, H., Fukui, M., Demura, M., Kikukawa, T., and Tsukamoto, T. (2024) Contribution of proteorhodopsin to light-dependent biological responses in Hymenobacter nivis P3T isolated from red snow in antarctica, Biochemistry, 63, 2257-2265, https://doi.org/10.1021/acs.biochem.4c00286.
  18. 18. Kim, S.-H., Jung, B., Hong, S. G., and Jung, K.-H. (2020) Temperature dependency of proton pumping activity for marine microbial rhodopsin from antartic ocean, Sci. Rep., 10, 1356, https://doi.org/10.1038/s41598-020-58023-5.
  19. 19. Lamm, G. H. U., Marin, E., Alekseev, A., Schellbach, A. V., Stetsenko, A., Bourenkov, G., Borshchevskiy, V., Asido, M., Agthe, M., Engilberge, S., Rose, S. L., Caramello, N., Royant, A., Schneider, T. R., Bateman, A., Mager, T., Moser, T., Wachtveitl, J., Guskov, A., and Kovalev, K. (2024) CryoRhodopsins: a comprehensive characterization of a group of microbial rhodopsins from cold environments, bioRxiv, https://doi.org/10.1101/2024.01.15.575777.
  20. 20. Guerrero, L. D., Vikram, S., Makhalanyane, T. P., and Cowan, D. A. (2017) Evidence of microbial rhodopsins in Antarctic Dry Valley edaphic systems, Environ. Microbiol., 19, 3755-3767, https://doi.org/https://doi.org/10.1111/14622920.13877.
  21. 21. Rodrigues, D. F., Goris, J., Vishnivetskaya, T., Gilichinsky, D., Thomashow, M. F., and Tiedje, J. M. (2006) Characterization of Exiguobacterium isolates from the Siberian permafrost. Description of Exiguobacterium sibiricum sp. nov, Extremophiles, 10, 285-294, https://doi.org/10.1007/s00792-005-0497-5.
  22. 22. Petrovskaya, L. E., Lukashev, E. P., Chupin, V. V., Sychev, S. V., Lyukmanova, E. N., Kryukova, E. A., Ziganshin, R. H., Spirina, E. V., Rivkina, E. M., Khatypov, R. A., Erokhina, L. G., Gilichinsky, D. A., Shuvalov, V. A., and Kirpichnikov, M. P. (2010) Predicted bacteriorhodopsin from Exiguobacterium sibiricum is a functional proton pump, FEBS Lett., 584, 4193-4196, https://doi.org/10.1016/j.febslet.2010.09.005.
  23. 23. Balashov, S. P., Petrovskaya, L. E., Lukashev, E. P., Imasheva, E. S., Dioumaev, A. K., Wang, J. M., Sychev, S. V., Dolgikh, D. A., Rubin, A. B., Kirpichnikov, M. P., and Lanyi, J. K. (2012) Aspartate-histidine interaction in the retinal Schiff base counterion of the light-driven proton pump of Exiguobacterium sibiricum, Biochemistry, 51, 5748-5762, https://doi.org/10.1021/bi300409m.
  24. 24. Balashov, S. P., Petrovskaya, L. E., Imasheva, E. S., Lukashev, E. P., Dioumaev, A. K., Wang, J. M., Sychev, S. V., Dolgikh, D. A., Rubin, A. B., Kirpichnikov, M. P., and Lanyi, J. K. (2013) Breaking the carboxyl rule: lysine 96 facilitates reprotonation of the Schiff base in the photocycle of a retinal protein from Exiguobacterium sibiricum, J. Biol. Chem., 288, 21254-21265, https://doi.org/10.1074/jbc.M113.465138.
  25. 25. Petrovskaya, L., Balashov, S., Lukashev, E., Imasheva, E., Gushchin, I. Y., Dioumaev, A., Rubin, A., Dolgikh, D., Gordeliy, V., Lanyi, J., and Kirpichnikov, M. (2015) ESR – a retinal protein with unusual properties from Exiguobacterium sibiricum, Biochemistry (Moscow), 80, 688-700, https://doi.org/10.1134/S000629791506005X.
  26. 26. Siletsky, S. A., Mamedov, M. D., Lukashev, E. P., Balashov, S. P., Dolgikh, D. A., Rubin, A. B., Kirpichnikov, M. P., and Petrovskaya, L. E. (2016) Electrogenic steps of light-driven proton transport in ESR, a retinal protein from Exiguobacterium sibiricum, Biochim. Biophys. Acta, 1857, 1741-1750, https://doi.org/10.1016/j.bbabio.2016.08.004.
  27. 27. Petrovskaya, L. E., Siletsky, S. A., Mamedov, M. D., Lukashev, E. P., Balashov, S. P., Dolgikh, D. A., and Kirpichnikov, M. P. (2023) Features of the mechanism of proton transport in ESR, retinal protein from Exiguobacterium sibiricum, Biochemistry (Moscow), 88, 1544-1554, https://doi.org/10.1134/s0006297923100103.
  28. 28. Gushchin, I., Chervakov, P., Kuzmichev, P., Popov, A. N., Round, E., Borshchevskiy, V., Ishchenko, A., Petrovskaya, L., Chupin, V., Dolgikh, D. A., Arseniev, A. S., Kirpichnikov, M., and Gordeliy, V. (2013) Structural insights into the proton pumping by unusual proteorhodopsin from nonmarine bacteria, Proc. Natl. Acad. Sci. USA, 110, 12631-12636, https://doi.org/10.1073/pnas.1221629110.
  29. 29. Rappsilber, J., Mann, M., and Ishihama, Y. (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips, Nat. Protocols, 2, 1896-1906, https://doi.org/10.1038/nprot.2007.261.
  30. 30. Tyanova, S., Temu, T., and Cox, J. (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics, Nat. Protocols, 11, 2301-2319, https://doi.org/10.1038/nprot.2016.136.
  31. 31. Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M. Y., Geiger, T., Mann, M., and Cox, J. (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data, Nat. Meth., 13, 731-740, https://doi.org/10.1038/nmeth.3901.
  32. 32. Rodrigues, D. F., Ivanova, N., He, Z., Huebner, M., Zhou, J., and Tiedje, J. M. (2008) Architecture of thermal adaptation in an Exiguobacterium sibiricum strain isolated from 3 million year old permafrost: a genome and transcriptome approach, BMC Genomics, 9, 547, https://doi.org/10.1186/1471-2164-9-547.
  33. 33. Jinendiran, S., Dileep Kumar, B. S., Dahms, H.-U., Arulanandam, C. D., and Sivakumar, N. (2019) Optimization of submerged fermentation process for improved production of β-carotene by Exiguobacterium acetylicum S01, Heliyon, 5, e01730, https://doi.org/https://doi.org/10.1016/j.heliyon.2019.e01730.
  34. 34. Patel, V. K., Srivastava, R., Sharma, A., Srivastava, A. K., Singh, S., Srivastava, A. K., Kashyap, P. L., Chakdar, H., Pandiyan, K., Kalra, A., and Saxena, A. K. (2018) Halotolerant Exiguobacterium profundum PHM11 tolerate salinity by accumulating L-proline and fine-tuning gene expression profiles of related metabolic pathways, Front. Microbiol., 9, 423, https://doi.org/10.3389/fmicb.2018.00423.
  35. 35. Gilichinsky, D. A., and Rivkina, E. M. (2011) Permafrost microbiology, in Encyclopedia of Geobiology, Springer, pp. 726-732, https://doi.org/10.1007/978-1-4020-9212-1_162.
  36. 36. Jansson, J. K., and Tas, N. (2014) The microbial ecology of permafrost, Nat. Rev. Microbiol., 12, 414-425, https://doi.org/10.1038/nrmicro3262.
  37. 37. Akram, N., Palovaara, J., Forsberg, J., Lindh, M. V., Milton, D. L., Luo, H., González, J. M., and Pinhassi, J. (2013) Regulation of proteorhodopsin gene expression by nutrient limitation in the marine bacterium Vibrio sp. AND4, Environ. Microbiol., 15, 1400-1415, https://doi.org/https://doi.org/10.1111/1462-2920.12085.
  38. 38. Kimura, H., Young, C. R., Martinez, A., and DeLong, E. F. (2011) Light-induced transcriptional responses associated with proteorhodopsin-enhanced growth in a marine flavobacterium, ISME J., 5, 1641-1651, https://doi.org/10.1038/ismej.2011.36.
  39. 39. Kopejtka, K., Tomasch, J., Kaftan, D., Gardiner, A. T., Bína, D., Gardian, Z., Bellas, C., Dröge, A., Geffers, R., Sommaruga, R., and Koblížek, M. (2022) A bacterium from a mountain lake harvests light using both proton-pumping xanthorhodopsins and bacteriochlorophyll-based photosystems, Proc. Nat. Acad. Sci. USA, 119, e2211018119, https://doi.org/doi:10.1073/pnas.2211018119.
  40. 40. Liu, Q., Li, W., Liu, D., Li, L., Li, J., Lv, N., Liu, F., Zhu, B., Zhou, Y., Xin, Y., and Dong, X. (2021) Light stimulates anoxic and oligotrophic growth of glacial Flavobacterium strains that produce zeaxanthin, ISME J., 15, 1844-1857, https://doi.org/10.1038/s41396-020-00891-w.
  41. 41. Klassen, J. L. (2010) Phylogenetic and evolutionary patterns in microbial carotenoid biosynthesis are revealed by comparative genomics, PLoS One, 5, e11257, https://doi.org/10.1371/journal.pone.0011257.
  42. 42. Jaffe, A. L., Konno, M., Kawasaki, Y., Kataoka, C., Béjà, O., Kandori, H., Inoue, K., and Banfield, J. F. (2022) Saccharibacteria harness light energy using type-1 rhodopsins that may rely on retinal sourced from microbial hosts, ISME J., 16, 2056-2059, https://doi.org/10.1038/s41396-022-01231-w.
  43. 43. Keffer, J. L., Hahn, M. W., and Maresca, J. A. (2015) Characterization of an unconventional rhodopsin from the freshwater actinobacterium Rhodoluna lacicola, J. Bacteriol., 197, 2704-2712, https://doi.org/doi:10.1128/jb.00386-15.
  44. 44. Fang, J., Zhang, Y., Zhu, T., and Li, Y. (2023) Scramblase activity of proteorhodopsin confers physiological advantages to Escherichia coli in the absence of light, iScience, 26, 108551, https://doi.org/10.1016/j.isci.2023.108551.
  45. 45. Raymond-Bouchard, I., and Whyte, L. G. (2017) From transcriptomes to metatranscriptomes: cold adaptation and active metabolisms of psychrophiles from cold environments, in Psychrophiles: From Biodiversity to Biotechnology (Margesin, R. ed), Springer International Publishing, Cham, pp. 437-457, https://doi.org/10.1007/9783-319-57057-0_18.
  46. 46. Wu, G., Baumeister, R., and Heimbucher, T. (2023) Molecular mechanisms of lipid-based metabolic adaptation strategies in response to cold, Cells, 12, https://doi.org/10.3390/cells12101353.
  47. 47. Zhao, Z., Liu, Z., and Mao, X. (2020) Biotechnological advances in lycopene β-cyclases, J. Agric. Food Chem., 68, 11895-11907, https://doi.org/10.1021/acs.jafc.0c04814.
  48. 48. Sajjad, W., Din, G., Rafiq, M., Iqbal, A., Khan, S., Zada, S., Ali, B., and Kang, S. (2020) Pigment production by cold-adapted bacteria and fungi: colorful tale of cryosphere with wide range applications, Extremophiles, 24, 447-473, https://doi.org/10.1007/s00792-020-01180-2.
  49. 49. Collins, T., and Margesin, R. (2019) Psychrophilic lifestyles: mechanisms of adaptation and biotechnological tools, Appl. Microbiol. Biotechnol., 103, 2857-2871, https://doi.org/10.1007/s00253-019-09659-5.
  50. 50. Singh, A., Krishnan, K. P., Prabaharan, D., and Sinha, R. K. (2017) Lipid membrane modulation and pigmentation: A cryoprotection mechanism in Arctic pigmented bacteria, J. Basic Microbiol., 57, 770-780, https://doi.org/10.1002/jobm.201700182.
  51. 51. Seel, W., Baust, D., Sons, D., Albers, M., Etzbach, L., Fuss, J., and Lipski, A. (2020) Carotenoids are used as regulators for membrane fluidity by Staphylococcus xylosus, Sci. Rep., 10, 330, https://doi.org/10.1038/s41598-019-57006-5.
  52. 52. Jagannadham, M. V., Chattopadhyay, M. K., Subbalakshmi, C., Vairamani, M., Narayanan, K., Rao, C. M., and Shivaji, S. (2000) Carotenoids of an Antarctic psychrotolerant bacterium, Sphingobacterium antarcticus, and a mesophilic bacterium, Sphingobacterium multivorum, Arch. Microbiol., 173, 418-424, https://doi.org/10.1007/s002030000163.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library