RAS BiologyБиохимия Biochemistry

  • ISSN (Print) 0320-9725
  • ISSN (Online) 3034-5294

STUDY OF ELECTRON TRANSFER IN PHOTOSYSTEM I USING HIGH-FREQUENCY EPR SPECTROSCOPY. IN MEMORY OF PROFESSOR KLAUS MÖBIUS (1936–2024)

PII
S30345294S0320972525070023-1
DOI
10.7868/S3034529425070023
Publication type
Review
Status
Published
Authors
Volume/ Edition
Volume 90 / Issue number 7
Pages
903-914
Abstract
Klaus Möbius, Professor at the Free University of Berlin, was an outstanding physical chemist and biophysicist. He was a pioneer of the development of high field/high-frequency EPR spectroscopy methods and their application in the study of photosynthesis. Among the most essential are applications in studying the charge transfer kinetics and properties of the ion-radical pairs in photosynthetic reaction centers (RC). Under his leadership and with his direct participation a unique setup allowing registration of the kinetics of the electron transfer between (bacteriochlorophyll dimer and quinone in the bacterial photosynthetic RC and plant photosystem I (PSI) was created. This setup also allowed the precise determining the distance between separated charges based on measuring the frequencies of the Electron Spin Echo Envelope Modulation (ESEEM). This setup made it possible to prove that electron transfer in PSI occurs mainly along the branch A of redox cofactors. The kinetics of reverse reaction (reoxidation of the phyllosemiquinone-anion A1– and reduction of the photo-oxidized chlorophyll dimer P700+) in the PSI were measured under the same conditions. The essential data on the bioprotective effect of the disaccharide trehalose on the kinetics of forward and backward electron transfer in PSI complexes were obtained. A significant slowdown in the kinetics of electron transfer due to the restriction of the protein conformational mobility, as well as the long-term maintaining of PSI functional activity dried in a vitreous trehalose matrix at room temperature (i.e. subjected to a reversible anhydrobiosis) was demonstrated. These results obtained in collaboration with Prof. Möbius and Prof. Venturoli (Bologna) allowed elucidating the role of the hydrogen bond network in conformational mobility of the protein subunits in ensuring electron transfer in the photosynthetic RC.
Keywords
высокочастотная ЭПР-спектроскопия ион-радикальная пара мультирезонансные методы первичный донор электрона семихнион железосерные кластеры трегалоза
Date of publication
04.02.2026
Year of publication
2026
Number of purchasers
0
Views
83

References

  1. 1. Möbius, K., Plato, M., and Savitsky, A. (2022) The Möbius Strip Topology: History, Science, and Applications in Nanotechnology, Materials, and the Arts, Jenny Stanford Publishing, https://doi.org/10.1201/9781003256298.
  2. 2. Honerjäger, R. (1951) Microwave spectroscopy [in German], Naturwissenschaften, 38, 34-39, https://doi.org/10.1007/BF00716170.
  3. 3. Honerjäger, R. (1958) Paramagnetic electron resonance [in German], Fortsch. Chem. Forsch., 3, 722-737, https://doi.org/10.1007/BFb0051770.
  4. 4. Möbius, K., Savitsky, A., Malferrari, M., Francia, F., Mamedov, M. D., Semenov, A. Y., Lubitz, W., and Venturoli, G. (2020) Soft dynamic confinement of membrane proteins by dehydrated trehalose matrices: high-field EPR and fast-laser studies, Appl. Magn. Reson., 51, 773-850, https://doi.org/10.1007/s00723-020-01240-y.
  5. 5. Möbius, K. (1965) Investigation of simple π-electron systems using electron spin resonance and polarography: Part I. Experiment and theory [in German], Zeitschr. Naturforsch. A, 20, 1093-1102.
  6. 6. Möbius, K. (2022) Autobiographical sketches (2021), Appl. Magn. Reson., 53, 467-489, https://doi.org/10.1007/s00723-021-01410-6.
  7. 7. Schneider, F., and Moebius, K. (1963) Report: the evaluation of electron resonance spectra of organic radicals [in German], Zeitschr. Naturforsch. B, 18, 1111-1119.
  8. 8. Möbius, K., and Plato, M. (1967) EPR-investigation of dissolved free-radical ions of non-alternating hydrocarbons [in German], Zeitschr. Naturforsch. A, 22, 929-939, https://doi.org/10.1515/zna-1967-0612.
  9. 9. Möbius, K., and Dinse, K.-P. (1972) ENDOR of organic radicals in solution, Chimia, 26, 461, https://doi.org/10.2533/chimia.1972.461.
  10. 10. Feher, G. (1956) Observation of nuclear magnetic resonances via the electron spin resonance line, Phys. Rev., 103, 834, https://doi.org/10.1103/PhysRev.103.834.
  11. 11. Hyde, J. S., and Maki, A. H. (1964) ENDOR of a free radical in solution, J. Chem. Phys., 40, 3117-3118, https://doi.org/10.1063/1.1724957.
  12. 12. Hyde, J. S. (1965) ENDOR of free radicals in solution, J. Chem. Phys., 43, 1806-1818, https://doi.org/10.1063/1.1697013.
  13. 13. Möbius, K., Van Willigen, H., and Maki, A. H. (1971) ENDOR study of pentaphenylcyclopentadienyl radicals in solution. Lifting of orbital degeneracy by methyl substitution, Mol. Phys., 20, 289-304, https://doi.org/10.1080/00268977100100271.
  14. 14. Möbius, K., and Biehl, R. (1979) Electron-nuclear-nuclear TRIPLE resonance of radicals in solutions, in Multiple Electron Resonance Spectroscopy (Dorio, M. M., and Freed, J. H., eds) Springer, pp. 475-507, https://doi.org/10.1007/978-1-4684-3441-5_14.
  15. 15. Biehl, R., Moebius, K., O’Connor, S.E., Walter, R. I., and Zimmermann, H. (1979) Evaluation and assignment of proton and nitrogen hyperfine coupling constants in the free-radical 1-picryl-2, 2-diphenylhydrazyl. An NMR, electron-nuclear double resonance, and electron-nuclear-nuclear triple resonance study, J. Phys. Chem., 83, 3449-3456, https://doi.org/10.1021/j100489a027.
  16. 16. Haindl, E., and Möbius, K. (1985) A 94 GHz EPR spectrometer with Fabry-Perot resonator, Zeitschr. Naturforsch. A, 40, 169-172, https://doi.org/10.1515/zna-1985-0211.
  17. 17. Box, H.C., Budzinski, E. E., and Potter, W. (1971) Effects of ionizing radiation on potassium hydrogen malonate, J. Chem. Phys., 55, 315-319, https://doi.org/10.1063/1.1675523.
  18. 18. Гринберг О., Дубинский А., Шувалов В., Оранский Л., Курочкин В., Лебедев Я. (1976) Субмиллиметровая спектроскопия ЭПР свободных радикалов, Докл. Акад. Наук СССР, 230, 884-887.
  19. 19. Galkin, A. A., Grinberg, O. Y., Dubinskii, A. A., Kabdin, N. N., Krymov, V. N., Kurochkin, V. I., Lebedev, Y. S., Oranskii, L. G., and Shuvalov, V. F. (1977) EPR spectrometer in 2-mm range for chemical-research, Instr. Exp. Tech., 20, 1229-1233.
  20. 20. Weber, R. T., Disselhorst, J., Prevo, L. J., Schmidt, J., and Wenckebach, W. T. H. (1989) Electron spin-echo spectroscopy at 95 GHz, J. Magn. Reson., 81, 129-144, https://doi.org/10.1016/0022-2364 (89)90272-2.
  21. 21. Prisner, T. F., Un, S., and Griffin, R. G. (1992) Pulsed ESR at 140 GHz, Isr. J. Chem., 32, 357-363, https://doi.org/10.1002/ijch.199200042.
  22. 22. Lynch, W. B., Earle, K. A., and Freed, J. H. (1988) 1-mm wave ESR spectrometer, Rev. Sci. Instrum., 59, 1345-1351, https://doi.org/10.1063/1.1139720.
  23. 23. Hoff, A. J., and Möbius, K. (1978) Nitrogen electron nuclear double resonance and proton triple resonance experiments on the bacteriochlorophyll cation in solution, Proc. Natl. Acad. Sci. USA, 75, 2296-2300, https://doi.org/10.1073/pnas.75.5.2296.
  24. 24. Lendzian, F., Lubitz, W., Scheer, H., Hoff, A. J., Plato, M., Tränkle, E., and Möbius, K. (1988) ESR, ENDOR and TRIPLE resonance studies of the primary donor radical cation P960+• in the photosynthetic bacterium Rhodopseudomonas viridis, Chem. Phys. Lett., 148, 377-385, https://doi.org/10.1016/0009-2614 (88)87191-4.
  25. 25. Gorka, M., Cherepanov, D. A., Semenov, A. Y., and Golbeck, J. H. (2020) Control of electron transfer by protein dynamics in photosynthetic reaction centers, Crit. Rev. Biochem. Mol. Biol., 55, 425-468, https://doi.org/10.1080/10409238.2020.1810623.
  26. 26. Prisner, T. F., Rohrer, M., and Möbius, K. (1994) Pulsed 95 GHz high-field EPR heterodyne spectrometer with high spectral and time resolution, Appl. Magn. Reson., 7, 167-183, https://doi.org/10.1007/BF03162610.
  27. 27. Savitsky, A., Gopta, O., Mamedov, M., Golbeck, J. H., Tikhonov, A., Möbius, K., and Semenov, A. (2010) Alteration of the axial met ligand to electron acceptor A0 in photosystem I: effect on the generation of P700•+ A1•− radical pairs as studied by W-band transient EPR, Appl. Magn. Reson., 37, 85-102, https://doi.org/10.1007/s00723-009-0052-0.
  28. 28. Dashdorj, N., Xu, W., Cohen, R. O., Golbeck, J. H., and Savikhin, S. (2005) Asymmetric electron transfer in cyanobacterial photosystem I: charge separation and secondary electron transfer dynamics of mutations near the primary electron acceptor A0, Biophys. J., 88, 1238-1249, https://doi.org/10.1529/biophysj.104.050963.
  29. 29. Cohen, R. O., Shen, G., Golbeck, J. H., Xu, W., Chitnis, P. R., Valieva, A. I., van der Est, A., Pushkar, Y., and Stehlik, D. (2004) Evidence for asymmetric electron transfer in cyanobacterial photosystem I: analysis of a methionine-to-leucine mutation of the ligand to the primary electron acceptor A0, Biochemistry, 43, 4741-4754, https://doi.org/10.1021/bi035633f.
  30. 30. Salikhov, K. M., Pushkar, Y. N., Golbeck, J. H., and Stehlik, D. (2003) Interpretation of multifrequency transient EPR spectra of the P700+ A0 QK− state in photosystem I complexes with a sequential correlated radical pair model: wild type versus A0 mutants, Appl. Magn. Reson., 24, 467-482, https://doi.org/10.1007/BF03166949.
  31. 31. Zech, S. G., Hofbauer, W., Kamlowski, A., Fromme, P., Stehlik, D., Lubitz, W., and Bittl, R. (2000) A structural model for the charge separated state in photosystem I from the orientation of the magnetic interaction tensors, J. Phys. Chem. B, 104, 9728-9739, https://doi.org/10.1021/jp002125w.
  32. 32. Jordan, P., Fromme, P., Witt, H.T., Klukas, O., Saenger, W., and Krauß, N. (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution, Nature, 411, 909-917, https://doi.org/10.1038/35082000.
  33. 33. Lubitz, W. (2006) EPR studies of the primary electron donor P700 in photosystem, in Photosystem I. Advances in Photosynthesis and Respiration (Golbeck, J. H., ed) Vol. 24, Springer, Dordrecht, https://doi.org/10.1007/978-14020-4256-0_17.
  34. 34. Plato, M., Krauß, N., Fromme, P., and Lubitz, W. (2003) Molecular orbital study of the primary electron donor P700 of photosystem I based on a recent X-ray single crystal structure analysis, Chem. Phys., 294, 483-499, https://doi.org/10.1016/S0301-0104 (03)00378-1.
  35. 35. Mula, S., Savitsky, A., Möbius, K., Lubitz, W., Golbeck, J. H., Mamedov, M. D., Semenov, A. Y., and van der Est, A. (2012) Incorporation of a high potential quinone reveals that electron transfer in photosystem I becomes highly asymmetric at low temperature, Photochem. Photobiol. Sci., 11, 946-956, https://doi.org/10.1039/c2pp05340c.
  36. 36. Sukhanov, A. A., Mamedov, M. D., Möbius, K., Semenov, A. Y., and Salikhov, K. M. (2018) The decrease of the ESEEM frequency of P700+ A1– ion-radical pair in photosystem i embedded in trehalose glassy matrix at room temperature can be explained by acceleration of spin-lattice relaxation, Appl. Magn. Reson., 49, 1011-1025, https://doi.org/10.1007/s00723-018-1017-y.
  37. 37. Malferrari, M., Savitsky, A., Mamedov, M. D., Milanovsky, G. E., Lubitz, W., Möbius, K., Semenov, A. Y., and Venturoli, G. (2016) Trehalose matrix effects on charge-recombination kinetics in photosystem I of oxygenic photosynthesis at different dehydration levels, Biochim. Biophys. Acta, 1857, 1440-1454, https://doi.org/10.1016/j. bbabio.2016.05.001.
  38. 38. Shelaev, I., Gorka, M., Savitsky, A., Kurashov, V., Mamedov, M., Gostev, F., Möbius, K., Nadtochenko, V., Golbeck, J., and Semenov, A. (2017) Effect of dehydrated trehalose matrix on the kinetics of forward electron transfer reactions in photosystem I, Zeitschr. Phys. Chem., 231, 325-345, https://doi.org/10.1515/zpch-2016-0860.
  39. 39. Milanovsky, G., Gopta, O., Petrova, A., Mamedov, M., Gorka, M., Cherepanov, D., Golbeck, J. H., and Semenov, A. (2019) Multiple pathways of charge recombination revealed by the temperature dependence of electron transfer kinetics in cyanobacterial photosystem I, Biochim Biophys Acta Bioenerg., 1860, 601-610, https://doi.org/10.1016/j.bbabio.2019.06.008.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library