- PII
- S30345294S0320972525040039-1
- DOI
- 10.7868/S3034529425040039
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 90 / Issue number 4
- Pages
- 531-549
- Abstract
- Th2 cytokines (IL-4, IL-5, and IL-13) play an important role in the development of allergies, including allergic rhinitis (AR). IL-13 promotes mucus hypersecretion in the airways and IL-5 recruits eosinophils to the nasal mucosa, leading to increased inflammation and tissue damage. Drugs based on monoclonal antibodies that block the activity of these cytokines are being developed for the treatment of allergic diseases. However, studies of drugs that target IL-13 alone (such as Trabokinumab and Lebrikizumab) were not successful. Given that IL-5 and IL-13 have different roles in AR, simultaneous inhibition of both cytokines may be a promising approach. New methods of regulating gene activity, such as RNA interference (RNAi), offer new perspectives for the development of drugs. This study describes a complex consisting of siRNAs that inhibit the activity of or genes and a carrier peptide LTP. The effects of this complex on the allergic inflammation in a mouse model of AR was studied. Suppression of expression decreased nasal hyperreactivity and reduced the number of goblet cells in the respiratory epithelium of AR-induced mice. Inhibiting the gene had a more beneficial effect than suppression alone, further contributing to reducing the number of cells infiltration the nasal cavity. When both and were suppressed simultaneously, the result was similar to that of inhibition alone. Likely, IL-13 plays a more significant role in the development of AR than IL-5. As a result, the possibility of using RNAi for anti-cytokine therapy for AR has been demonstrated. However, dual inactivation of IL-5 and IL-13 by siRNAs does not provide any advantages over inactivating IL-13 alone in the current mouse model of AR. However, the lack of success of anti-IL-13 therapy in clinical practice indicates the promise of an approach based on the dual blocking of IL-5 and IL-13.
- Keywords
- аллергия цитокины РНК-интерференция IL-5 IL-13 Th2-иммунный ответ
- Date of publication
- 28.04.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 114
References
- 1. Astafieva, N. G., Baranov, A. A., Vishneva, E. A., Daikhes, N. A., Zhestkov, A. V., Ilyina, N. I., Karneeva, O. V., Karpova, E. P., Kim, I. A., Kryukov, A. I., Kurbacheva, O. M., Meshkova, R. Ya., Namazova-Baranova, L. S., Nenasheva, N. M., Novik, G., Nosulya, E. V., Pavlova, K., Pampura, A., Svistushkin, V. M., Selimzyanova, L.R., Khaitov, M. R., and Khaitov, R. M. (2020) Allergic rhinitis, Russ. Rhinol., 28, 246-256, https://doi.org/10.17116/ROSRINO202028041246.
- 2. Yoo, E. R. (2015) Global atlas of allergic rhinitis and chronic rhinosinusitis, European Academy of Allergy and Clinical Immunology, 1-442.
- 3. Bousquet, J., Anto, J. M., Bachert, C., Baiardini, I., Bosnic-Anticevich, S., Canonica, W. G., Melén, E., Palomares, O., Scadding, G. K., Togias, A., and Toppila-Salmi, S. (2020) Allergic rhinitis, Nat. Rev. Dis. Primers, 6, 95, https://doi.org/10.1038/S41572-020-00227-0.
- 4. Козулина И. Е., Курбачева О. М., Ильина Н. И. (2014) Аллергия сегодня. Анализ новых эпидемиологических данных, Росс. Аллергол. Журн., 3, 3-10.
- 5. Kucuksezer, U. C., Ozdemir, C., Cevhertas, L., Ogulur, I., Akdis, M., and Akdis, C. A. (2020) Mechanisms of allergen-specific immunotherapy and allergen tolerance, Allergol.Int., 69, 549-560, https://doi.org/10.1016/j.alit. 2020.08.002.
- 6. Bush, A. (2019) Pathophysiological mechanisms of asthma, Front. Pediatr., 7, 446532, https://doi.org/10.3389/FPED.2019.00068.
- 7. Meng, Y., Wang, C., and Zhang, L. (2019) Recent developments and highlights in allergic rhinitis, Allergy, 74, 2320-2328, https://doi.org/10.1111/ALL.14067.
- 8. Shilovskiy, I. P., Eroshkina, D. V., Babakhin, A. A., and Khaitov, M. R. (2017) Anticytokine therapy of allergic asthma, Mol. Biol., 51, 1-13.
- 9. Shilovskiy, I. P., Kovchina, V. I., Timotievich, E. D., Nikolskii, A. A., and Khaitov, M. R. (2023) Role and molecular mechanisms of alternative splicing of Th2-cytokines IL-4 and IL-5 in atopic bronchial asthma, Biochemistry (Moscow), 88, 1608-1621, https://doi.org/10.1134/S0006297923100152.
- 10. Komlósi, Z. I., van de Veen, W., Kovács, N., Szűcs, G., Sokolowska, M., O’Mahony, L., Mübeccel, A., and Akdis, C. A. (2022) Cellular and molecular mechanisms of allergic asthma, Mol. Asp. Med., 85, 100995, https://doi.org/10.1016/j.mam.2021.100995.
- 11. Habib, N., Pasha, M. A., and Tang, D. D. (2022) Current understanding of asthma pathogenesis and biomarkers, Cells, 11, 2764, https://doi.org/10.3390/cells11172764.
- 12. Gans, M. D., and Gavrilova, T. (2020) Understanding the immunology of asthma: Pathophysiology, biomarkers, and treatments for asthma endotypes, Paediatr. Respirat. Rev., 36, 118-127, https://doi.org/10.1016/j.prrv. 2019.08.002.
- 13. Harb, H., and Chatila, T. A. (2020) Mechanisms of dupilumab, Clin. Exp. Allergy, 50, 5-14, https://doi.org/10.1111/cea.13491
- 14. Keating, G. M. (2015) Mepolizumab: first global approval, Drugs, 75, 2163-2169, https://doi.org/10.1007/s40265-015-0513-8.
- 15. Menzella, F., Ruggiero, P., Ghidoni, G., Fontana, M., Bagnasco, D., Livrieri, F., Scelfo, C., and Facciolongo, N. (2020) Anti-il5 therapies for severe eosinophilic asthma: literature review and practical insights, J. Asthma Allergy, 13, 301-313, https://doi.org/10.2147/JAA.S258594.
- 16. Tohda, Y., Matsumoto, H., Miyata, M., Taguchi, Y., Ueyama, M., Joulain, F., and Arakawa, I. (2022) Cost-effectiveness analysis of dupilumab among patients with oral corticosteroid-dependent uncontrolled severe asthma in Japan, J. Asthma, 59, 2162-2173, https://doi.org/10.1080/02770903.2021.1996596.
- 17. Wilson, R. C., and Doudna, J. A. (2013) Molecular mechanisms of RNA interference, Annu. Rev. Biophys., 42, 217-239, https://doi.org/10.1146/annurev-biophys-083012-130404.
- 18. Lu, Z. J., and Mathews, D. H. (2008) OligoWalk: an online siRNA design tool utilizing hybridization thermodynamics, Nucleic Acids Res., 36, W104-W108, https://doi.org/10.1093/nar/gkn250.
- 19. Shilovskiy, I. P., Sundukova, M. S., Korneev A. V., Nikolskii, A. A., Barvinskaya, E. D., Kovchina, V. I., Vishniakova, L. I., Turenko, V. N., Yumashev, K. V., Kaganova, M. M., Brylina, V. E., Sergeev, I., Maerle, A., Kudlay, D. A., Petukhova, O., and Khaitov, M. R. (2022) The mixture of siRNAs targeted to IL-4 and IL-13 genes effectively reduces the airway hyperreactivity and allergic inflammation in a mouse model of asthma, Int. Immunopharmacol., 103, 108432, https://doi.org/10.1016/j.intimp.2021.
- 20. Kozhikhova, K. V., Andreev, S. M., Shilovskiy, I. P., Timofeeva, A. V., Gaisina, A. R., Shatilov, A. A., Turetskiy, E.A., Andreev, I. M., Smirnov, V. V., Dvornikov, A. S., and Khaitov, M. R. (2018) A novel peptide dendrimer LTP efficiently facilitates transfection of mammalian cells, Org. Biomol. Chem., 16, 8181-8190, https://doi.org/10.1039/c8ob02039f.
- 21. Conrad, M. L., Yildirim, A. Ö., Sonar, S. S., Kiliç, A., Sudowe, S., Lunow, M., Teich, R., Renz, H., and Garn, H. (2009) Comparison of adjuvant and adjuvant-free murine experimental asthma models, Clin. Exp. Allergy, 39, 1246-1254, https://doi.org/10.1111/j.1365-2222.2009.03260.x.
- 22. Shilovskiy, I. P., Barvinskaia, E. D., Kaganova, M. M., Kovchina, V. I., Yumashev, K. V., Korneev, A. V., Nikolskii, A. A., Vishnyakova, L. I., Brylina, V.E., Rusak, T. E., Kurbachova, O. M., Dyneva, M. E., Petukhova, O. A., Gudima, G.O., Kudlay, D. A., and Khaitov, M. R. (2022) A mouse model of allergic rhinitis mimicking human pathology, Immunologiya, 43, 654-672, https://doi.org/10.33029/0206-4952-2022-43-6-654-672.
- 23. Köse, Ş., Tatlı Kış, T., Diniz, G., Akbulut, İ., Serin, B. G., Yılmaz, C., Özyazıcı, M., Arıcı, M., Yurdasiper, A., and Yılmaz, O. (2021) A new experimental allergic rhinitis model in mice, İzmir Dr. Behçet Uz Çocuk Hast. Dergisi, 11, 233-239, https://doi.org/10.5222/buchd.2021.86658.
- 24. Gatta A. K., Hariharapura R. C., Udupa N., Reddy M. S., and Josyula V. R. (2018) Strategies for improving the specificity of siRNAs for enhanced therapeutic potential, Exp. Opin. Drug Discov., 13, 709-725, https://doi.org/10.1080/17460441.2018.1480607.
- 25. Zhang, Y., Lan, F., and Zhang, L. (2022) Update on pathomechanisms and treatments in allergic rhinitis, Allergy, 77, 3309-3319, https://doi.org/10.1111/all.15454.
- 26. Saito, H., Matsumoto, K., Denburg, A. E., Crawford, L., Ellis, R., Inman, M. D., Sehmi, R., Takatsu, K., Matthaei, K. I., and Denburg, J. A. (2002) Pathogenesis of murine experimental allergic rhinitis: a study of local and systemic consequences of IL-5 deficiency, J. Immunol., 168, 3017-3023, https://doi.org/10.4049/jimmunol.168.6.3017.
- 27. Cho, J. Y., Miller, M., Baek, K. J., Han, J. W., Nayar, J., Lee, S. Y., McElwain, S., Friedman, S., and Broide, D. H. (2004) Inhibition of airway remodeling in IL-5-deficient mice, J. Clin. Invest., 113, 551-560, https://doi.org/10.1172/jci200419133.
- 28. Hamelmann, E., Cieslewicz, G., Schwarze, J., Ishizuka, T., Joetham, A., Heusser, C., and Gelfand, E. W. (1999) Anti-interleukin 5 but not anti-IgE prevents airway inflammation and airway hyperresponsiveness, Am. J. Respir. Crit. Care Med., 160, 934-941, https://doi.org/10.1164/ajrccm.160.3.9806029.
- 29. Lundblad, L. K. A., Thompson-Figueroa, J., Allen, G. B., Rinaldi, L., Norton, R. J., Irvin, C. G., and Bates, J. H. T. (2007) Airway hyperresponsiveness in allergically inflamed mice: the role of airway closure, Am. J. Respir. Crit. Care Med., 175, 768-774, https://doi.org/10.1164/rccm.200610-1410OC.
- 30. Agrawal, A., Rengarajan, S., Adler, K. B., Ram, A., Ghosh, B., Fahim, M., and Dickey, B. F. (2007) Inhibition of mucin secretion with MARCKS-related peptide improves airway obstruction in a mouse model of asthma, J. Appl. Physiol., 102 399-405, https://doi.org/10.1152/japplphysiol.00630.2006.
- 31. Huang, H. Y., Lee, C. C., and Chiang, B. L. (2008) Small interfering RNA against interleukin-5 decreases airway eosinophilia and hyper-responsiveness, Gene Ther., 15, 660-667, https://doi.org/10.1038/gt.2008.15.
- 32. Shardonofsky, F. R., Venzor, J.I., Barrios, R., Leong, K.-P., Huston, D. P., and Texas, H. (1999) Therapeutic efficacy of an anti-IL-5 monoclonal antibody delivered into the respiratory tract in a murine model of asthma, J. Allergy Clin. Immunol., 104, 215-221, https://doi.org/10.1016/S0091-6749 (99)70138-7.
- 33. Walter, D. M., McIntire, J. J., Berry, G., McKenzie, A. N. J., Donaldson, D. D., DeKruyff, R. H., and Umetsu, D. T. (2001) Critical role for IL-13 in the development of allergen-induced airway hyperreactivity, J. Immunol., 167, 4668-4675, https://doi.org/10.4049/jimmunol.167.8.4668.
- 34. Grünig, G., Warnock, M., Wakil, A. E., Venkaya, R., Brombacher, F., Rennick, D.M., Sheppard, D., Mohrs, M., Donaldson, D. D., Locksley, R. M., and Corry, D. B. (1998) Requirement for IL-13 independently of IL-4 in exper imental asthma, Science, 282, 2261-2263, https://doi.org/10.1126/science.282.5397.2261.
- 35. Wills-Karp, M., Luyimbazi, J., Xu, X., Schofield, B., Neben, T. Y., Karp, C. L., and Donaldson, D. D. (1998) Interleukin-13: central mediator of allergic asthma, Science, 282, 2258-2261, https://doi.org/10.1126/science. 282.5397.2258.
- 36. Yang, G., Volk, A., Petley, T., Emmell, E., Giles-Komar, J., Shang, X., Li, J., Anuk, M. D., Shealy, D., Griswold, D. E., and Li, L. (2004) Anti-IL-13 monoclonal antibody inhibits airway hyperresponsiveness, inflammation and airway remodeling, Cytokine, 28, 224-232, https://doi.org/10.1016/j.cyto.2004.08.007.
- 37. Kumar, R. K., Herbert, C., Webb, D. C., Li, L., and Foster, P. S. (2004) Effects of anticytokine therapy in a mouse model of chronic asthma, Am. J. Respir. Crit. Care Med., 170, 1043-1048, https://doi.org/10.1164/rccm. 200405-681OC.
- 38. Lively, T. N., Kossen, K., Balhorn, A., Koya, T., Zinnen, S., Takeda, K., Lucas, J. J., Polisky, B., Richards, I. M., and Gelfand, E. W. (2008) Effect of chemically modified IL-13 short interfering RNA on development of airway hyperresponsiveness in mice, J. Allergy Clin. Immunol., 121, 88-94, https://doi.org/10.1016/j.jaci. 2007.08.029.
- 39. Lee, C. C., Huang, H. Y., and Chiang, B. L. (2011) Lentiviral-mediated interleukin-4 and interleukin-13 RNA interference decrease airway inflammation and hyperresponsiveness, Hum. Gene Ther., 22, 577-586, https://doi.org/10.1089/hum.2009.105.
- 40. Webb, D. C., McKenzie, A. N. J., Koskinen, A. M. L., Yang, M., Mattes, J., and Foster, P. S. (2000) Integrated signals between IL-13, IL-4, and IL-5 regulate airways hyperreactivity, J. Immunol., 165, 108-113, https://doi.org/10.4049/jimmunol.165.1.108.
- 41. Marone, G., Granata, F., Pucino, V., Pecoraro, A., Heffler, E., Loffredo, S., Scadding, G. W., and Varricchi, G. (2019) The intriguing role of interleukin 13 in the pathophysiology of asthma, Front. Pharmacol., 10, 1387, https://doi.org/10.3389/fphar.2019.01387.
- 42. Weinstein, S. F., Katial, R., Jayawardena, S., Pirozzi, G., Staudinger, H., Eckert, L., Joish, V. N., Amin, N., Maroni, J., Rowe, P., Graham, N. M. H, and Teper, A. (2018) Efficacy and safety of dupilumab in perennial allergic rhinitis and comorbid asthma, J. Allergy Clin. Immunol., 142, 171-177.e1, https://doi.org/10.1016/j.jaci. 2017.11.051.