- Код статьи
- S30345294S0320972525010087-1
- DOI
- 10.7868/S3034529425010087
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 90 / Номер выпуска 1
- Страницы
- 117-130
- Аннотация
- Установлено, что при введении больным атеросклерозом per os препарата убихинона Q10 (СoQ10) окисленность (содержание липогидропероксидов) частиц липопротеидов низкой плотности (ЛНП) резко снижается, что подтверждает важную роль этого природного антиоксиданта в защите частиц ЛНП от свободнорадикального окисления (СРО) in vivo. Исследовано влияние липофильных природных антиоксидантов убихинола Q10 (СoQ10H2) и α-токоферола (α-ТОН) на кинетические параметры Cu2+-инициированного СРО частиц ЛНП. В этой модельной системе показана возможность синергизма антиоксидантного действия СoQ10H2 и α-ТОН. Обсуждаются вероятные механизмы регенерации липофильных антиоксидантов в частицах ЛНП, в том числе регенерация α-ТОН из токофероксильного радикала (α-ТО•) с участием СoQ10H2 и/или аскорбата.
- Ключевые слова
- липопротеиды низкой плотности свободнорадикальное окисление антиоксиданты убихинол Q10 α-токоферол биорегенерация антиоксидантов
- Дата публикации
- 04.02.2026
- Год выхода
- 2026
- Всего подписок
- 0
- Всего просмотров
- 86
Библиография
- 1. Sharapov, M. G., Gudkov, S. V., and Lankin, V. Z. (2021) Hydroperoxide reducing enzymes in the regulation of free radical processes, Biochemistry (Moscow), 86, 1256-1274, https://doi.org/10.1134/S0006297921100084.
- 2. Shen, B. W., Scanu, A. M., and Kezdy, F. J. (1977) Structure of human serum lipoproteins inferred from compositional analysis, Proc. Natl. Acad. Sci. USA, 74, 837-841, https://doi.org/10.1073/pnas.74.3.837.
- 3. Lankin, V. Z., Tikhaze, A. K., and Kosach, V. Ya. (2022) Comparative susceptibility to oxidation of different classes of blood plasma lipoproteins, Biochemistry (Moscow), 87, 1335-1341, https://doi.org/10.1134/S0006297922110128.
- 4. Sharapov, M. G., Gudkov, S. V., and Lankin, V. Z. (2021) Role of glutathione peroxidases and peroxiredoxins in free radical induced pathologies, Biochemistry (Moscow), 86, 1418-1433, https://doi.org/10.1134/S0006297921110067.
- 5. Lankin, V. Z., and Tikhaze, A. K. (2017) Role of oxidative stress in the genesis of atherosclerosis and diabetes mellitus: a personal look back on 50 years of research, Curr. Aging Sci., 10, 18-25, https://doi.org/10.2174/1874609809666160926142640.
- 6. Mellors, A., and Tappel, A. L. (1966) The inhibition of mitochondrial peroxidation by ubiquinone and ubiquinol, J. Biol. Chem., 241, 4353-4356, https://doi.org/10.1016/S0021-9258 (18)99728-0.
- 7. Witting, L. A. (1980) Vitamin E and lipid antioxidants in free-radical-initiated reactions, Free Radic. Biol., 4, 295-319, https://doi.org/10.1016/B978-0-12-566504-9.50016-7.
- 8. Bliznakov, E. G., and Wilkins, D. J. (1998) Biochemical and clinical consequences of inhibiting coenzyme Q10 biosynthesis by lipid-lowering HMG-CoA reductase inhibitors (statins): a critical overview, Adv. Ther., 15, 218-228.
- 9. Hevonoja, T., Pentikäinen, M. O., Hyvönen, M. T., Kovanen, P. T., and Ala-Korpela, M. (2000) Structure of low density lipoprotein (LDL) particles: basis for understanding molecular changes in modified LDL, Biochim. Biophys. Acta., 15, 189-210, https://doi.org/10.1016/s1388-1981 (00)00123-2.
- 10. Thomas, S. R., Neuzil, J., and Stocker, R. (1997) Inhibition of LDL oxidation by ubiquinol-10. A protective mechanism for coenzyme Q in atherogenesis? Mol. Aspects Med., 18, 85-103, https://doi.org/10.1016/s0098-2997 (97)00031-9.
- 11. Thomas, S. R., Witting, P. K., and Stocker, R. (1999) A role for reduced coenzyme Q in atherosclerosis? Biofactors, 9, 207-224, https://doi.org/10.1002/biof.5520090216.
- 12. Littarru, G. P., Battino, M., Tomasetti, M., Mordente, A., Santini, S., Oradei, A., Manto, A., and Ghirlanda, G. (1994) Metabolic implications of coenzyme Q10 in red blood cells and plasma lipoproteins, Mol. Aspects Med., 15, 67-72, https://doi.org/10.1016/0098-2997 (94)90014-0.
- 13. Stocker, R. (1993) Natural antioxidants and atherosclerosis, Asia Pac. J. Clin. Nutr., 2, 15-20.
- 14. Niki, E. (2014) Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence, Free Radic. Biol. Med., 66, 3-12, https://doi.org/10.1016/j.freeradbiomed.2013.03.022.
- 15. Frei, B., Kim, M. C., and Ames, B. N. (1990) Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations, Proc. Natl. Acad. Sci. USA, 87, 4879-4883, https://doi.org/10.1073/pnas.87.12.4879.
- 16. Kagan, V. E., Fabisiak, J. E., and Quinn, E. J. (2000) Coenzyme Q and vitamin E need each other as antioxidants, Protoplasma, 214, 11-18, https://doi.org/10.1007/BF02524257.
- 17. Bowry, V. W., Stocker, R. (1993) Tocopherol-mediated peroxidation. The prooxidant effect of vitamin E on the radical-initiated oxidation of human low-density lipoprotein, J. Am. Chem. Soc., 115, 6029-6044, https://doi.org/ 10.1021/ja00067a019.
- 18. Witting, P. K., Upston, J. M., and Stocker, R. (1997) Role of alpha-tocopheroxyl radical in the initiation of lipid peroxidation in human low-density lipoprotein exposed to horse radish peroxidase, Biochemistry, 36, 1251-1258, https://doi.org/10.1021/bi962493j.
- 19. Fong, C. W. (2023) Coenzyme Q 10 and Vitamin E synergy, electron transfer, antioxidation in cell membranes, and interaction with cholesterol, hal-03976270.
- 20. Lindgren, F. T. (1975) Preparative ultracentrifugal laboratory procedures and suggestions for lipoprotein analysis, in Analysis of Lipids and Lipoproteins (Perkins, E. G., ed) Champaign: Amer. Oil. Chemists Soc., pp. 204-224.
- 21. Nourooz-Zadeh, J., Tajaddini-Sarmadi, J., and Wolf, S. P. (1994) Measurement of plasma hydroperoxide concentrations by the ferrous oxidation-xylenol orange assay in conjunction with triphenylphosphine, Anal. Biochem., 220, 403-409, https://doi.org/10.1006/abio.1994.1357.
- 22. Lankin, V. Z., Konovalova, G. G., Tikhaze, A. K., Shumaev, K. B., Kumskova, E. M., and Viigimaa, M. (2014) The initiation of the free radical peroxidation of low-density lipoproteins by glucose and its metabolite methylglyoxal: a common molecular mechanism of vascular wall injures in atherosclerosis and diabetes, Mol. Cell. Biochem., 395, 241-252, https://doi.org/10.1007/s11010-014-2131-2.
- 23. Mark, J., and Burkitt, A. (2001) Critical overview of the chemistry of copper-dependent low density lipoprotein oxidation: roles of lipid hydroperoxides, a-tocopherol, thiols, and ceruloplasmin, Arch. Biochem. Biophys., 394, 117-135, https://doi.org/10.1006/abbi.2001.2509.
- 24. Patel, R. P., and Darley-Usmar, V. (1999) Molecular mechanisms of the copper dependent oxidation of low-density lipoprotein, Free Radic. Res., 30, 1-9, https://doi.org/10.1080/10715769900300011.
- 25. Kontush, A., Hubner, C., Finckh, B., Kohlschutter, A., and Beisiegel, U. (1994) Low density lipoprotein oxidizability by copper correlates to its initial ubiquinol-10 and polyunsaturated fatty acid content, FEBS Lett., 341, 69-73, https://doi.org/10.1016/0014-5793 (94)80242-4.
- 26. Эмануэль Н. М., Денисов Е. Т., Майзус З. К. (1965) Цепные реакции окисления углеводородов в жидкой фазе, Москва, Наука, 375 с.
- 27. Kagan, V. E., Freisleben, H. J., Tsuchiya, M., Forte, T., and Packer, L. (1991) Generation of probucol radicals and their reduction by ascorbate and dihydrolipoic acid in human low density lipoproteins, Free Radic. Res. Commun., 15, 265-276, https://doi.org/10.3109/10715769109105222.
- 28. Shumaev, K. B., Ruuge, E. K., Dmitrovsky, A. A., Bykhovsky, V. Ya., and Kukharchuk, V. V. (1997) Effect of lipid peroxidation products and antioxidants on the formation of probucol radical in low density lipoproteins, Biochemistry (Moscow), 62, 657-660.
- 29. Nohl, H., Gille, L., and Kozlov, A. V. (1998) Antioxidant-derived prooxidant formation from ubiquinol, Free Radic. Biol. Med., 25, 666-675, https://doi.org/10.1016/S0891-5849 (98)00105-1.
- 30. Roginsky, V. A., Mohr, D., and Stocker, R. (1996) Reduction of ubiquinone-1 by ascorbic acid is a catalytic and reversible process controlled by the concentration of molecular oxygen, Redox Rep., 2, 55-62, https://doi.org/10.1080/13510002.1996.11747027.
- 31. Steinberg, D., Parthasarathy, S., Carew, T. E., Khoo, J. C., and Witztum, J. L. (1989) Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity, New Eng. J. Med., 320, 915-924, https://doi.org/10.1056/NEJM198904063201407.
- 32. Kita, T., Ishii, K., Yokode, M., Kume, N., Nagano, Y., Arai, H., Arai, H., and Kawai, C. (1990) The role of oxidized low density lipoprotein in the pathogenesis of atherosclerosis, Eur. Heart J., 11, 122-127, https://doi.org/10.1093/eurheartj/11.suppl_e.122.
- 33. Witztum, J. L. (1994) The oxidation hypothesis of atherosclerosis, Lancet, 344, 793-795, https://doi.org/10.1016/S0140-6736 (94)92346-9.
- 34. Yla-Herttuala, S. (1994) Role of lipid and lipoprotein oxidation in the pathogenesis of atherosclerosis, Drugs Today, 30, 507-514.
- 35. Steinberg, D. (1995) Role of oxidized LDL and antioxidants in atherosclerosis, Adv. Exp. Med. Biol., 369, 39-48, https://doi.org/10.1007/978-1-4615-1957-7_5.
- 36. Lankin, V. Z., and Tikhaze, A. K. (2017) Role of oxidative stress in the genesis of atherosclerosis and diabetes mellitus: a personal look back on 50 years of research, Curr. Aging Sci., 10, 18-25, https://doi.org/10.2174/1874609809666160926142640.
- 37. Lankin, V. Z., Tikhaze, A. K., and Melkumyants, A. M. (2022) Dicarbonyl-dependent modification of LDL as a key factor of endothelial dysfunction and atherosclerotic vascular wall damage, Antioxidants, 11, 1565, https://doi.org/10.3390/antiox11081565.
- 38. Lankin, V. Z., Tikhaze, A. K., and Melkumyants, A. M. (2022) Malondialdehyde as an important key factor of molecular mechanisms of vascular wall damage under heart diseases development, Int. J. Mol. Sci., 24, 128, https://doi.org/10.3390/ijms24010128.
- 39. Lankin, V. Z., Tikhaze, A. K., Sharapov, M. G., and Konovalova, G. G. (2024) The role of natural low molecular weight dicarbonyls in atherogenesis and diabetogenesis, Rev. Cardiovasc. Med., 25, 295, https://doi.org/10.31083/j.rcm2508295.
- 40. Lankin, V. Z., Tikhaze, A. K., and Konovalova, G. G. (2023) Differences in structural changes and pathophysiological effects of low-density lipoprotein particles upon accumulation of acylhydroperoxy derivatives in their outer phospholipid monolayer or upon modification of apoprotein B-100 by natural dicarbonyls, Biochemistry (Moscow), 88, 1910-1919, https://doi.org/10.1134/S0006297923110196.
- 41. Lankin, V. Z., Sharapov, M. G., Tikhaze, A. K., Goncharov, R. G., Antonova, O. A., Konovalova, G. G., and Novoselov, V. I. (2023) Dicarbonyl-modified low-density lipoproteins are key inducers of LOX-1 and NOX1 gene expression in the cultured human umbilical vein endotheliocytes, Biochemistry (Moscow), 88, 2125-2136, https://doi.org/10.1134/S0006297923120143.
- 42. Stocker, R., Bowry, V. W., and Frei, B. (1991) Ubiquinol-10 protects human low density lipoprotein more efficiently against lipid peroxidation than does α-tocopherol, Proc. Natl. Acad. Sci. USA, 88, 1646-1650, https://doi.org/10.1073/pnas.88.5.1646.
- 43. Ahmadvand, H., Mabuchi, H., Nohara, A., Kobayahi, J., and Kawashiri, M. A. (2013) Effects of coenzyme Q(10) on LDL oxidation in vitro, Acta Med. Iran, 51, 12-18.
- 44. Raizner, A. E. (2019) Coenzyme Q10, Methodist Debakey Cardiovasc. J., 15,185-191, https://doi.org/10.14797/mdcj-15-3-185.
- 45. Mohr, D., Bowry, V. W., and Stocker, R. (1992) Dietary supplementation with coenzyme Q10 results in increased levels of ubiquinol-10 within circulating lipoproteins and increased resistance of human low-density lipoprotein to the initiation of lipid peroxidation, Biochim. Biophys. Acta, 1126, 247-254, https://doi.org/10.1016/0005-2760 (92)90237-P.
- 46. Bargossi, A. M., Grossi, G., Fiorella, P. L., Gaddi, A., Di Giulio, R., and Battino, M. (1994) Exogenous CoQ10 supplementation prevents plasma ubiquinone reduction induced by HMG-CoA reductase inhibitors, Mol. Aspects Med., 15, 187-193, https://doi.org/10.1016/0098-2997 (94)90028-0.
- 47. Garrido-Maraver, J., Cordero, M. D., Oropesa-Avila, M., Vega, A.F., de la Mata, M., Pavon A. D., Alcocer-Gomez, E., Calero, C. P., Paz, M. V., Alanis, M., de Lavera, I., Cotan, D., and Sanchez-Alcazar, J. A. (2014) Clinical applications of coenzyme Q10, Front. Biosci., 19, 619-633, https://doi.org/10.2741/4231.
- 48. Gutierrez-Mariscal, F. M., de la Cruz-Ares, S., Torres-Peña, J. D., Alcalá-Diaz, J. F., Yubero-Serrano, E. M., and López-Miranda, J. (2021) Coenzyme Q10 and Cardiovascular diseases, Antioxidants, 10, 906, https://doi.org/10.3390/antiox10060906.
- 49. Lankin, V. Z., and Tikhaze, A. K. (2003) Atherosclerosis as a free radical pathology and antioxidative therapy of this disease, Free Radic., 344, 218-231.
- 50. Lankin, V. Z., Tikhaze, A. K., Kapel’ko, V. I., Shepel’kova, G. S., Shumaev, K. B., Panasenko, O. M., Konovalova, G. G., and Belenkov, Y. N. (2007) Mechanisms of oxidative modification of low density lipoproteins under conditions of oxidative and carbonyl stress, Biochemistry (Moscow), 72, 1081-1090, https://doi.org/10.1134/s0006297907100069.
- 51. Kontush, A., Reich, A., Baum, K., Spranger, T., Finckh, B., Kohlschȕtter, A., and Beisiegel, U. (1997) Plasma ubiquinol-10 is decreased in patients with hyperlipidaemia, Atherosclerosis, 129, 119-126, https://doi.org/10.1016/s0021-9150 (96)06021-2.
- 52. Miura, S., Watanabe, J., Tomita, T., Sano, M., and Tomita, I. (1994) The inhibitory effects of tea polyphenols (flavan-3-ol derivatives) on Cu2+-mediated oxidative modification of low density lipoprotein, Biol. Pharm. Bull., 17, 1567-1572, https://doi.org/10.1248/bpb.17.1567.
- 53. Yeomans, V. C., Linseisen, J., and Wolfram, G. (2005) Interactive effects of polyphenols, tocopherol and ascorbic acid on the Cu2+-mediated oxidative modification of human low density lipoproteins, Eur. J. Nutr., 44, 422-428, https://doi.org/10.1007/s00394-005-0546-y.
- 54. Jayaraman, S., Gantz, D. L., Gursky, O. (2007) Effects of oxidation on the structure and stability of human low-density lipoprotein, Biochemistry, 46, 5790-5797, https://doi.org/10.1021/bi700225a.
- 55. Beyer, R. E. (1994) The role of ascorbate in antioxidant protection of biomembranes: interaction with vitamin E and coenzyme Q, J. Bioenerg. Biomembr., 26, 349-358, https://doi.org/10.1007/BF00762775.
- 56. Neuzil, J., Thomas, S. R., and Stocker, R. (1997) Requirement for, promotion, or inhibition by alpha-tocopherol of radical-induced initiation of plasma lipoprotein lipid peroxidation, Free Radic Biol. Med., 22, 57-71, https://doi.org/10.1016/s0891-5849 (96)00224-9.
- 57. Carr, A. C., Zhu, B. Z., and Frei, B. (2000) Potential antiatherogenic mechanisms of ascorbate (vitamin C) and alpha-tocopherol (vitamin E), Circ. Res., 87, 349-354, https://doi.org/10.1161/01.res.87.5.349.
- 58. Guo, Q., and Packer, L. (1999) ESR studies of ascorbic acid-dependent recycling of the vitamin E homologue Trolox by coenzyme Q0 in murine skin homogenates, Redox Rep., 4, 105-111, https://doi.org/10.1179/135100099101534783.
- 59. Chancharme, L., Thérond, P., Nigon, F., Zarev, S., Mallet, A., Bruckert, E., and Chapman, M. J. (2002) LDL particle subclasses in hypercholesterolemia. Molecular determinants of reduced lipid hydroperoxide stability, J. Lipid Res., 43, 453-462, https://doi.org/10.1016/S0022-2275 (20)30152-8.