RAS BiologyБиохимия Biochemistry

  • ISSN (Print) 0320-9725
  • ISSN (Online) 3034-5294

ASSOCIATION BETWEEN HUMAN LEUKOCYTE ANTIGEN ALLELES AND ENDOCRINE DISORDERS IN 895-PATIENT COHORT FROM RUSSIAN CLINICAL POPULATION

PII
S30345294S0320972525080129-1
DOI
10.7868/S3034529425080129
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 90 / Issue number 8
Pages
1229-1244
Abstract
Diseases of the endocrine system represent a serious public health problem and frequently can be caused by genetic factors or their combinations with environmental and lifestyle factors. Assessing relevant genetic factors is important to estimate the risk of endocrine pathologies in an individual patient before their manifestation. Identification of genetic variations in proteins of the major histocompatibility complex is important in connection with the autoimmune nature of many endocrine pathologies, including type 1 diabetes. In this study, we investigated the relationship between human leukocyte antigen (HLA) genes and 13 endocrine disorders by using experimental whole-exome sequencing profiles obtained for 895 patients from the National Medical Research Center for Endocrinology, Moscow. In addition, the linkage disequilibrium of the identified alleles in the context of the respective diagnoses was assessed. We identified totally 45 statistically significant associations between HLA alleles and specific diagnoses of endocrine pathologies. Among them, 33 were described for the first time and 12 were previously communicated for type 1 diabetes. Overall, 17 alleles were associated with type 1 diabetes and four with other forms of diabetes. Furthermore, three alleles were associated with obesity, five with adrenogenital diseases, three with hypoglycemia, and three with precocious puberty. Single alleles were found to be associated with congenital hypothyroidism without goiter, hyperfunction of pituitary gland, adrenomedullary hyperfunction, and short stature due to endocrine disorder. The study shows that early HLA typing can help detecting endocrine disorder genetic risk factors. In addition, associations with specific HLA alleles can broaden our understanding of the mechanisms of pathogenesis of relevant endocrine disorders.
Keywords
эндокринная патология HLA сахарный диабет ожирение врождённый гипотиреоз без зоба аутоиммунные заболевания
Date of publication
28.07.2025
Year of publication
2025
Number of purchasers
0
Views
91

References

  1. 1. Qin, D. (2019) Next-generation sequencing and its clinical application, Cancer Biol. Med., 16, 4-10, https://doi.org/10.20892/j.issn.2095-3941.2018.0055.
  2. 2. Concannon, P., Erlich, H. A., Julier, C., Morahan, G., Nerup, J., Pociot, F., Todd, J. A., and Rich, S. S. (2005) Type 1 diabetes: evidence for susceptibility loci from four genome-wide linkage scans in 1,435 multiplex families, Diabetes, 54, 2995-3001, https://doi.org/10.2337/diabetes.54.10.2995.
  3. 3. Maahs, D. M., West, N. A., Lawrence, J. M., and Mayer-Davis, E. J. (2010) Epidemiology of type 1 diabetes, Endocrinol. Metab. Clin. North Am., 39, 481-497, https://doi.org/10.1016/j.ecl.2010.05.011.
  4. 4. Noble, J. A., Valdes, A. M., Cook, M., Klitz, W., Thomson, G., and Erlich, H. A. (1996) The role of HLA class II genes in insulin-dependent diabetes mellitus: molecular analysis of 180 Caucasian, multiplex families, Am. J. Hum. Genet, 59, 1134-1148.
  5. 5. Liao, W.-L., Liu, T.-Y., Cheng, C.-F., Chou, Y.-P., Wang, T.-Y., Chang, Y.-W., Chen, S.-Y., and Tsai, F.-J. (2022) Analysis of HLA variants and Graves’ disease and its comorbidities using a high resolution imputation system to examine electronic medical health records, Front. Endocrinol. (Lausanne), 13, 842673, https://doi.org/10.3389/fendo.2022.842673.
  6. 6. Cambria, V., Beccuti, G., Gatti, F., Bona, C., Maccario, M., and Gasco, V. (2020) HLA DRB1*0415: a new possible genetic susceptibility factor for Hirata’s disease, Endocrine, 67, 729-732, https://doi.org/10.1007/s12020-019-02132-3.
  7. 7. Yang, J., Lernmark, Å., Uusitalo, U. M., Lynch, K. F., Veijola, R., Winkler, C., Larsson, H. E., Rewers, M., She, J.-X., was related to HLA-DQ in 2-4-year-old children at genetic risk for type 1 diabetes, Int. J. Obes., 38, 1491-1496, https://doi.org/10.1038/ijo.2014.55.
  8. 8. Gonzalez-Galarza, F. F., McCabe, A., Santos, E. J. M. Dos, Jones, J., Takeshita, L., Ortega-Rivera, N. D., Cid-Pavon, G. M. Del, Ramsbottom, K., Ghattaoraya, G., Alfirevic, A., Middleton, D., and Jones, A. R. (2019) Allele frequency net database (AFND) 2020 update: gold-standard data classification, open access genotype data and new query tools, Nucleic Acids Res., 48, D783-D788, https://doi.org/10.1093/nar/gkz1029.
  9. 9. Andrews, S. (2010) FastQC – a quality control tool for high throughput sequence data, Babraham Bioinformatics, URL: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
  10. 10. Li, H., and Durbin, R. (2009) Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics, 25, 1754-1760, https://doi.org/10.1093/bioinformatics/btp324.
  11. 11. Xie, C., Yeo, Z. X., Wong, M., Piper, J., Long, T., Kirkness, E. F., Biggs, W. H., Bloom, K., Spellman, S., VierraGreen, C., Brady, C., Scheuermann, R. H., Telenti, A., Howard, S., Brewerton, S., Turpaz, Y., and Venter, J. C. (2017) Fast and accurate HLA typing from short-read next-generation sequence data with xHLA, Proc. Natl. Acad. Sci. USA, 114, 8059-8064, https://doi.org/10.1073/pnas.1707945114.
  12. 12. Excoffier, L., and Slatkin, M. (1995) Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population, Mol. Biol. Evol., 12, 921-927, https://doi.org/10.1093/oxfordjournals.molbev.a040269.
  13. 13. McKinney, W. (2010) Data structures for statistical computing in Python, Proceedings of the 9th Python in Science Conference, https://doi.org/10.25080/Majora-92bf1922-00a.
  14. 14. Waskom, M. (2021) seaborn: statistical data visualization, J. Open Source Softw., 6, 3021, https://doi.org/10.21105/joss.03021.
  15. 15. Hunter, J. D. (2007) Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 9, 90-95, https://doi.org/10.1109/MCSE.2007.55.
  16. 16. El-Amir, M. I., El-Feky, M. A., ELAbd, A., El-Melegy, T. T., and Ilonen, J. (2019) HLA-B*08 carry a risk for type 1 diabetes among cow’s milk exposed Egyptian infants and unmarked linkage disequilibrium with DR3-DQA1*05-DQB1*02 haplotype, Egypt. J. Immunol., 26, 113-120.
  17. 17. Mbunwe, E., van der Auwera, B. J., Vermeulen, I., Demeester, S., Dalem, A. Van, Balti, E. V., Aken, S. Van, Derdelinckx, L., Dorchy, H., Schepper, J. De, Schravendijk, C. van, Wenzlau, J. M., Hutton, J. C., Pipeleers, D., Weets, I., and Gorus, F. K. (2013) HLA-A*24 is an independent predictor of 5-year progression to diabetes in autoantibody-positive first-degree relatives of type 1 diabetic patients, Diabetes, 62, 1345-1350, https://doi.org/10.2337/db12-0747.
  18. 18. Kiyotani, K., Mai, T. H., and Nakamura, Y. (2017) Comparison of exome-based HLA class I genotyping tools: identification of platform-specific genotyping errors, J. Hum. Genet., 62, 397-405, https://doi.org/10.1038/jhg.2016.141.
  19. 19. Thuesen, N. H., Klausen, M. S., Gopalakrishnan, S., Trolle, T., and Renaud, G. (2022) Benchmarking freely available HLA typing algorithms across varying genes, coverages and typing resolutions, Front. Immunol., 13, 987655, https://doi.org/10.3389/fimmu.2022.987655.
  20. 20. Noble, J. A., and Valdes, A. M. (2011) Genetics of the HLA region in the prediction of type 1 diabetes, Curr. Diab. Rep., 11, 533-542, https://doi.org/10.1007/s11892-011-0223-x.
  21. 21. Erlich, H., Valdes, A. M., Noble, J., Carlson, J. A., Varney, M., Concannon, P., Mychaleckyj, J. C., Todd, J. A., Bonella, P., Fear, A. L., Lavant, E., Louey, A., and Moonsamy, P. (2008) HLA DR-DQ haplotypes and genotypes and type 1 diabetes risk, Diabetes, 57, 1084-1092, https://doi.org/10.2337/db07-1331.
  22. 22. Shen, J., Guo, T., Wang, T., Zhen, Y., Ma, X., Wang, Y., Zhang, Z.-X., Cai, J.-P., Mao, W., Zhu, F.-M., Li, J.-P., Wang, Z.-L., Zhang, D.-M., Liu, M.-L., Shan, X.-Y., Zhang, B.-W., Zhu, C.-F., Deng, Z.-H., Yu, W.-J., Chen, Q., Li, G.-L., Yang, T., Lu, S., Pan, Q.-Q., Fan, S., Wang, X.-Y., Zhao, X., Bi, X.-Y., Qiao, Y.-H., Su, P.-C., Lv, R., Li, G.-Y., Li, H.-C., Pei, B., Jiao, L.-X., Shen, G., Liu, J., Feng, Z.-H., Su, Y.-P., Xie, Y.-B., Di, W.-Y., Wang, X.-Y., Liu, X., Zhang, X.-P., Du, D., Liu, Q., Han, Y., Chen, J.-W., Gu, M., and Baier, L. J. (2018) HLA-B*07, HLA-DRB1*07, HLA-DRB1*12, and HLA-C*03:02 strongly associate with BMI: data from 1.3 million healthy Chinese adults, Diabetes, 67, 861-871, https://doi.org/10.2337/db17-0852.
  23. 23. Oxtoby, E., Roberts, D. F., Wentzel, J., Frost, G., and Parkin, J. M. (1982) Congenital hypothyroidism and HLA, Tissue Antigens, 19, 1-5, https://doi.org/10.1111/j.1399-0039.1982.tb01409.x.
  24. 24. Jacobsen, B. B., Brandt, N. J., and Svejgaard, A. (1981) HLA typing and congenital, primary hypothyroidism, Pediatr. Res., 15, 1568, https://doi.org/10.1203/00006450-198112000-00201.
  25. 25. Koppens, P. F., Hoogenboezem, T., and Degenhart, H. J. (1989) Adrenogenital syndrome. I. Introduction, enzymology and heredity, Tijdschr Kindergeneeskd, 57, 129-135.
  26. 26. Hadley, D., Hagopian, W., Liu, E., She, J.-X., Simell, O., Akolkar, B., Ziegler, A.-G., Rewers, M., Krischer, J. P., Chen, W.-M., Onengut-Gumuscu, S., Bugawan, T. L., Rich, S. S., Erlich, H., and Agardh, D. (2015) HLA-DPB1*04:01 protects genetically susceptible children from celiac disease autoimmunity in the TEDDY study, Am. J. Gastroenterol., 110, 915-920, https://doi.org/10.1038/ajg.2015.150.
  27. 27. Ye, J., Long, A. E., Pearson, J. A., Taylor, H., Bingley, P. J., Williams, A. J. K., and Gillespie, K. M. (2015) Attenuated humoral responses in HLA-A*24-positive individuals at risk of type 1 diabetes, Diabetologia, 58, 2284-2287, https://doi.org/10.1007/s00125-015-3702-9.
  28. 28. Deng, T., Lyon, C. J., Minze, L. J., Lin, J., Zou, J., Liu, J. Z., Ren, Y., Yin, Z., Hamilton, D. J., Reardon, P. R., Sherman, V., Wang, H. Y., Phillips, K. J., Webb, P., Wong, S. T. C., Wang, R., and Hsueh, W. A. (2013) Class II major histocompatibility complex plays an essential role in obesity-induced adipose inflammation, Cell. Metab., 17, 411-422, https://doi.org/10.1016/j.cmet.2013.02.009.
  29. 29. Obradovic, M., Sudar-Milovanovic, E., Soskic, S., Essack, M., Arya, S., Stewart, A. J., Gojobori, T., and Isenovic, E. R. (2021) Leptin and obesity: role and clinical implication, Front. Endocrinol. (Lausanne), 12, 585887, https://doi.org/10.3389/fendo.2021.585887.
  30. 30. Palmert, M. R., Radovick, S., and Boepple, P. A. (1998) Leptin levels in children with central precocious puberty, J. Clin. Endocrinol. Metab., 83, 2260-2265, https://doi.org/10.1210/jcem.83.7.4973.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library