- PII
- S30345294S0320972525080059-1
- DOI
- 10.7868/S3034529425080059
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 90 / Issue number 8
- Pages
- 1135-1147
- Abstract
- The expression levels of genes involved in high-density lipoprotein metabolism and atherogenesis and underlying metabolic pathways were aimed to relate to the number of stenotic coronary arteries. The expression of 65 preselected genes in the peripheral blood mononuclear cells of control patients (n = 63) and coronary artery disease (CAD) patients with one or two (low stenosis group, n = 35) or three or four (high stenosis group, n = 41) stenotic vessels, confirmed by coronary angiography, was measured with real-time PCR. Functional enrichment analysis was applied for annotation of differentially expressed genes. Differentially expressed genes in CAD patients compared to controls were characterized by metabolic pathways connected to plasma lipoprotein assembly, remodeling, and clearance and signaling and regulation of gene expression linked to cholesterol transport and efflux. However, specific expression profiles and metabolic pathways existed for high versus low stenosis comparisons. The expression of the CETP, PLTP, CD36, IL18, ITGB3, S100A8, S100A12, and VEGFA genes increased with the increase in the number of stenotic vessels, which suggests the involvement of these genes in stenosis expansion via lipoprotein metabolism, inflammation, angiogenesis, and innate immunity. The ITGB3, VEGFA, and CETP hub genes were selected as new signature of the expansion of coronary artery stenosis, which was validated with the GSE12288 dataset, with a combined OR value of 7.49 (95% CI, 2.21 to 25.43). The expression levels of the ITGB3, VEGFA, and CETP genes may be used for the diagnosis, prognosis estimation, and treatment of coronary stenosis with strong predictive power.
- Keywords
- атерогенез функциональность ЛВП дифференциальная экспрессия ишемическая болезнь сердца анализ функционального обогащения Reactome
- Date of publication
- 04.06.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 108
References
- 1. Rasheed, A., and Cummins, C. L. (2018) Beyond the foam cell: the role of LXRs in preventing atherogenesis, Int. J Mol. Sci., 19, 2307, https://doi.org/10.3390/ijms19082307.
- 2. Goldstein, J. L., DeBose-Boyd, R. A., and Brown, M. S. (2006) Protein sensors for membrane sterols, Cell, 124, 35-46, https://doi.org/10.1016/j.cell.2005.12.022.
- 3. Groenen, A. G., Halmos, B., Tall, A. R., and Westerterp, M. (2021) Cholesterol efflux pathways, inflammation, and atherosclerosis, Crit. Rev. Biochem. Mol. Biol., 56, 426-439, https://doi.org/10.1080/10409238.2021.1925217.
- 4. Dergunov, A. D., and Baserova, V. B. (2022) Different pathways of cellular cholesterol efflux, Cell Biochem. Biophys., 80, 471-481, https://doi.org/10.1007/s12013-022-01081-5.
- 5. Khera, A. V., Cuchel, M., Llera-Moya, M., Rodrigues, A., Burke, M. F., Jafri, K., French, B. C., Phillips, J. A., Mucksavage, M. L., Wilensky, R. L., Mohler, E. R., Rothblat, G. H., and Rader, D. J. (2011) Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis, N. Engl. J. Med., 364, 127-135, https://doi.org/10.1056/NEJMoa1001689.
- 6. Schoch, L., Alcover, S., Padró, T., Ben-Aicha, S., Mendieta, G., Badimon, L., and Vilahur, G. (2023) Update of HDL in atherosclerotic cardiovascular disease, Clin. Invest. Arterioscler., 35, 297-314, https://doi.org/10.1016/j.arteri.2023.10.002.
- 7. Rozhkova, A. V., Dmitrieva, V. G., Nosova, E. V., Dergunov, A. D., Limborska, S. A., and Dergunova, L. V. (2021) Genomic variants and multilevel regulation of ABCA1, ABCG1, and SCARB1 expression in atherogenesis, J. Cardiovasc. Dev. Dis., 8, 170, https://doi.org/10.3390/jcdd8120170.
- 8. Zhou, Y., Little, P. J., Downey, L., Afroz, R., Wu, Y., Ta, H. T., Xu, S., and Kamato, D. (2020) The role of tolllike receptors in atherothrombotic cardiovascular disease, ACS Pharmacol. Transl. Sci., 3, 457-471, https://doi.org/10.1021/acsptsci.9b00100.
- 9. Fotakis, P., Kothari, V., Thomas, D. G., Westerterp, M., Molusky, M. M., Altin, E., Abramowicz, S., Wang, N., He, Y., Heinecke, J. W., Bornfeldt, K. E., and Tall, A. R. (2019) Anti-inflammatory effects of HDL (high-density lipoprotein) in macrophages predominate over proinflammatory effects in atherosclerotic plaques, Arterioscler. Thromb. Vasc. Biol., 39, e253-e272, https://doi.org/10.1161/ATVBAHA.119.313253.
- 10. Van der Vorst, E. P. C., Theodorou, K., Wu, Y., Hoeksema, M. A., Goossens, P., Bursill, C. A., Aliyev, T., Huitema, L. F. A., Tas, S. W., Wolfs, I. M. J., Kuijpers, M. J. E., Gijbels, M. J., Schalkwijk, C. G., Koonen, D. P. Y., AbdollahiRoodsaz, S., McDaniels, K., Wang, C. C., Leitges, M., Lawrence, T., Plat, J., Van, E. M., Rye, K. A., Touqui, L., de Winther, M. P. J., Biessen, E. A. L., and Donners, M. M. P. C. (2017) High-density lipoproteins Exert pro-inflammatory effects on macrophages via passive cholesterol depletion and PKC-NF-kB/STAT1-IRF1 signaling, Cell Metab., 25, 197-207, https://doi.org/10.1016/j.atherosclerosis.2017.06.046.
- 11. Chen, H. H., and Stewart, A. F. (2016) Transcriptomic signature of atherosclerosis in the peripheral blood: fact or fiction? Curr. Atheroscler. Rep., 18, 77, https://doi.org/10.1007/s11883-016-0634-x.
- 12. Kashyap, S., Kumar, S., Agarwal, V., Misra, D. P., Phadke, S. R., and Kapoor, A. (2018) Gene expression profiling of coronary artery disease and its relation with different severities, J. Genet., 97, 853-867, https://doi.org/10.1007/s12041-018-0980-2.
- 13. Montorsi, P., Ravagnani, P. M., Galli, S., Rotatori, F., Veglia, F., Briganti, A., Salonia, A., Dehò, F., Rigatti, P., Montorsi, F., and Fiorentini, C. (2006) Association between erectile dysfunction and coronary artery disease. Role of coronary clinical presentation and extent of coronary vessels involvement: the COBRA trial, Eur. Heart J., 27, 2632-2639, https://doi.org/10.1093/eurheartj/ehl142.
- 14. Yuan, W., Shao, Y., Zhao, D., and Zhang, B. (2023) Correlation analysis of lipid accumulation index, triglyceride-glucose index and H-type hypertension and coronary artery disease, PeerJ, 11, e16069, https://doi.org/10.7717/peerj.16069.
- 15. Gensini, G. G. (1983) A more meaningful scoring system for determining the severity of coronary heart disease, Am. J. Cardiol., 51, 606, https://doi.org/10.1016/S0002-9149 (83)80105-2.
- 16. Wang, C., Song, C., Liu, Q., Zhang, R., Fu, R., Wang, H., Yin, D., Song, W., Zhang, H., and Dou, K. (2021) Gene expression analysis suggests immunological changes of peripheral blood monocytes in the progression of patients with coronary artery disease, Front. Genet., 12, 641117, https://doi.org/10.3389/fgene.2021.641117.
- 17. Li, Q., Wang, M., Zhang, S., Jin, M., Chen, R., Luo, Y., and Sun, X. (2022) Single-cell RNA sequencing in atherosclerosis: mechanism and precision medicine, Front. Pharmacol., 13, 977490, https://doi.org/10.3389/fphar.2022.977490.
- 18. Liu, M., Jiang, S., Ma, Y., Ma, J., Hassan, W., and Shang, J. (2018) Peripheral-blood gene expression profiling studies for coronary artery disease and its severity in Xinjiang population in China, Lipids Health Dis., 17, 154, https://doi.org/10.1186/s12944-018-0798-1.
- 19. Yoon, E., Zhang, W., Cai, Y., Peng, C., and Zhou, D. (2023) Identification and validation of key gene modules and pathways in coronary artery disease development and progression, Crit Rev. Eukaryot. Gene Expr., 33, 81-90, https://doi.org/10.1615/CritRevEukaryotGeneExpr.2023039631.
- 20. Mazzotta, C., Basu, S., Gower, A. C., Karki, S., Farb, M. G., Sroczynski, E., Zizza, E., Sarhan, A., Pande, A. N., Walsh, K., Dobrilovic, N., and Gokce, N. (2021) Perivascular adipose tissue inflammation in ischemic heart disease, Arterioscler. Thromb. Vasc. Biol., 41, 1239-1250, https://doi.org/10.1161/ATVBAHA.120.315865.
- 21. Dergunova, L. V., Nosova, E. V., Dmitrieva, V. G., Rozhkova, A. V., Bazaeva, E. V., Limborska, S. A., and Dergunov, A. D. (2020) HDL cholesterol is associated with PBMC expression of genes involved in HDL metabolism and atherogenesis, J. Med. Biochem., 39, 372-383, https://doi.org/10.2478/jomb-2019-0052.
- 22. Dergunov, A. D., Nosova, E. V., Rozhkova, A. V., Vinogradina, M. A., Baserova, V. B., Popov, M. A., Limborska, S. A., and Dergunova, L. V. (2023) Differential expression of subsets of genes related to HDL metabolism and atherogenesis in the peripheral blood in coronary artery disease, Curr. Issues Mol. Biol., 45, 6823-6841, https://doi.org/10.3390/cimb45080431.
- 23. Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M., and Sherlock, G. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium, Nat. Genet., 25, 25-29, https://doi.org/10.1038/75556.
- 24. Gene Ontology Consortium (2021) The Gene Ontology resource: enriching a GOld mine, Nucleic Acids Res., 49, D325-D334, https://doi.org/10.1093/nar/gkaa1113.
- 25. Gillespie, M., Jassal, B., Stephan, R., Milacic, M., Rothfels, K., Senff-Ribeiro, A., Griss, J., Sevilla, C., Matthews, L., Gong, C., Deng, C., Varusai, T., Ragueneau, E., Haider, Y., May, B., Shamovsky, V., Weiser, J., Brunson, T., Sanati, N., Beckman, L., Shao, X., Fabregat, A., Sidiropoulos, K., Murillo, J., Viteri, G., Cook, J., Shorser, S., Bader, G., Demir, E., Sander, C., Haw, R., Wu, G., Stein, L., Hermjakob, H., and D’Eustachio, P. (2022) The reactome pathway knowledgebase 2022, Nucleic Acids Res., 50, D687-D692, https://doi.org/10.1093/nar/gkab1028.
- 26. Sherman, B. T., Hao, M., Qiu, J., Jiao, X., Baseler, M. W., Lane, H. C., Imamichi, T., and Chang, W. (2022) DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update), Nucleic Acids Res., 50, W216-W221, https://doi.org/10.1093/nar/gkac194.
- 27. Szklarczyk, D., Gable, A. L., Nastou, K.C., Lyon, D., Kirsch, R., Pyysalo, S., Doncheva, N. T., Legeay, M., Fang, T., Bork, P., Jensen, L. J., and von Mering, C. (2021) The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets, Nucleic Acids Res., 49, D605-D612, https://doi.org/10.1093/nar/gkaa1074.
- 28. Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res., 13, 2498-2504, https://doi.org/10.1101/gr.1239303.
- 29. Pfaffl, M. W., Horgan, G. W., and Dempfle, L. (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR, Nucleic Acids Res., 30, e36, https://doi.org/10.1093/nar/30.9.e36.
- 30. Vandesompele, J., De, P. K., Pattyn, F., Poppe, B., Van, R. N., De, P. A., and Speleman, F. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes, Genome Biol., 3, RESEARCH0034, https://doi.org/10.1186/gb-2002-3-7-research0034.
- 31. McDonald, J.H., in: Handbook of Biological Statistics (3rd ed), Sparky House Publishing, Baltimore, Maryland, 2014, pp. 257-263.
- 32. Sinnaeve, P. R., Donahue, M. P., Grass, P., Seo, D., Vonderscher, J., Chibout, S. D., Kraus, W. E., Sketch, M., Jr., Nelson, C., Ginsburg, G. S., Goldschmidt-Clermont, P. J., and Granger, C. B. (2009) Gene expression patterns in peripheral blood correlate with the extent of coronary artery disease, PLoS One, 4, e7037, https://doi.org/10.1371/journal.pone.0007037.
- 33. Felker, G. M., Shaw, L. K., and O’Connor, C. M. (2002) A standardized definition of ischemic cardiomyopathy for use in clinical research, J. Am. Coll. Cardiol., 39, 210-218, https://doi.org/10.1016/S0735-1097 (01)01738-7.
- 34. Youden, W. J. (1950) Index for rating diagnostic tests, Cancer, 3, 32-35, https://doi.org/10.1002/1097-0142 (1950)3:13.0.CO;2-3.
- 35. Chin, C. H., Chen, S. H., Wu, H. H., Ho, C. W., Ko, M. T., and Lin, C. Y. (2014) cytoHubba: identifying hub objects and sub-networks from complex interactome, BMC Syst. Biol., 8, S11, https://doi.org/10.1186/1752-0509-8-S4-S11.
- 36. Parker, W. A. E., and Storey, R. F. (2024) The role of platelet P2Y(12) in inflammation, Br. J. Pharmacol., 181, 515-531, https://doi.org/10.1111/bph.16256.
- 37. Farokhzadian, J., Mangolian, S. P., and Bagheri, V. (2019) S100A12-CD36 axis: a novel player in the pathogenesis of atherosclerosis? Cytokine, 122, 154104, https://doi.org/10.1016/j.cyto.2017.07.010.
- 38. Ihim, S. A., Abubakar, S. D., Zian, Z., Sasaki, T., Saffarioun, M., Maleknia, S., and Azizi, G. (2022) Interleukin-18 cytokine in immunity, inflammation, and autoimmunity: Biological role in induction, regulation, and treatment, Front. Immunol., 13, 919973, https://doi.org/10.3389/fimmu.2022.919973.
- 39. Lagrange, J., Worou, M. E., Michel, J. B., Raoul, A., Didelot, M., Muczynski, V., Legendre, P., Plenat, F., Gauchotte, G., Lourenco-Rodrigues, M. D., Christophe, O. D., Lenting, P. J., Lacolley, P., Denis, C. V., and Regnault, V. (2022) The VWF/LRP4/aVb3-axis represents a novel pathway regulating proliferation of human vascular smooth muscle cells, Cardiovasc. Res., 118, 622-637, https://doi.org/10.1093/cvr/cvab042.
- 40. Ding, Y., Xiang, Q., Zhu, P., Fan, M., Tong, H., Wang, M., Cheng, S., Yu, P., Shi, H., Zhang, H., and Chen, X. (2024) Qihuang Zhuyu formula alleviates coronary microthrombosis by inhibiting PI3K/Akt/αIIbβ3-mediated platelet activation, Phytomedicine, 125, 155276, https://doi.org/10.1016/j.phymed.2023.155276.
- 41. Meza-Alvarado, J. C., Page, R. A., Mallard, B., Bromhead, C., and Palmer, B. R. (2023) VEGF-A related SNPs: a cardiovascular context, Front. Cardiovasc. Med., 10, 1190513, https://doi.org/10.3389/fcvm.2023.1190513.
- 42. Ribatti, D., Levi-Schaffer, F., and Kovanen, P. T. (2008) Inflammatory angiogenesis in atherogenesis--a double-edged sword, Ann. Med., 40, 606-621, https://doi.org/10.1080/07853890802186913.
- 43. Rademakers, T., Manca, M., Jin, H., Orban, T., Perisic, L. M., Frissen, H. J. M., Ruhle, F., Hautvast, P., van Rijsel, J., van Kuijk, K., Mees, B. M. E., Peutz-Kootstra, C. J., Heeneman, S., Daemen, M. J. A. P., Pasterkamp, G., Stoll, M., van Zandvoort, M. A. M. J., Hedin, U., Dequiedt, F., van Buul, J. D., Sluimer, J. C., and Biessen, E. A. L. (2024) Human atherosclerotic plaque transcriptomics reveals endothelial beta-2 spectrin as a potential regulator a leaky plaque microvasculature phenotype, Angiogenesis, 27, 461-474, https://doi.org/10.1007/s10456-024-09921-z.
- 44. Nicholls, S. J., Ray, K. K., Nelson, A. J., and Kastelein, J. J. P. (2022) Can we revive CETP-inhibitors for the prevention of cardiovascular disease? Curr. Opin. Lipidol., 33, 319-325, https://doi.org/10.1097/MOL.0000000000000854.
- 45. Lewis, A. C. F., and Green, R. C. (2021) Polygenic risk scores in the clinic: new perspectives needed on familiar ethical issues, Genome Med., 13, 14, https://doi.org/10.1186/s13073-021-00829-7.
- 46. Khozeimeh, F., Alizadehsani, R., Shirani, M., Tartibi, M., Shoeibi, A., Alinejad-Rokny, H., Harlapur, C., Sultanzadeh, S. J., Khosravi, A., Nahavandi, S., Tan, R. S., and Acharya, U. R. (2023) ALEC: active learning with ensemble of classifiers for clinical diagnosis of coronary artery disease, Comput. Biol. Med., 158, 106841, https://doi.org/10.1016/j.compbiomed.2023.106841.
- 47. Byars, S. G., and Inouye, M. (2018) Genome-wide association studies and risk scores for coronary artery disease: sex biases, Adv. Exp. Med. Biol., 1065, 627-642, https://doi.org/10.1007/978-3-319-77932-4_38.