RAS BiologyБиохимия Biochemistry

  • ISSN (Print) 0320-9725
  • ISSN (Online) 3034-5294

CELLS THAT DIE VIA AP-3 COMPLEX-DEPENDENT REGULATED DEATH PATHWAY SUPPORT SURVIVORS UNDER AMINO ACID DEFICIENCY

PII
S30345294S0320972525080049-1
DOI
10.7868/S3034529425080049
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 90 / Issue number 8
Pages
1124-1134
Abstract
There are examples of starvation initiating a programmed death cascade in unicellular organisms. It is believed that individuals committing suicide in this way support the survivors with their nutrients. It was recently discovered that heating up to 51°C kills the yeast cells in a special way. The cells dying from such heating first decompose the lysosome membrane, and only a few hours later lose the integrity of the plasma membrane. Since lysosomes contain hydrolases of nitrogen-containing biopolymers, this suicide pathway could help survivors under conditions of nitrogen starvation. The fact is that after the destruction of the plasma membrane, the salt composition of the cytosol changes abruptly, which in turn can lead to the aggregation of nitrogen-containing macromolecules, proteins and nucleic acids. The pores of the yeast cell walls are too small to let such aggregates through. Our experimental data are consistent with this hypothesis. We have shown that cells killed by heating up to (in our case) 52°C stimulate the growth of living cells under amino acid deficiency conditions. AP-3 complex mutants, which are unable to destroy the lysosome membrane, do not have this ability. Cells killed by boiling also do not support growth under these conditions. Unexpectedly, the medium from cells killed by boiling contained, on average, more of each amino acid than the medium from cells killed by heating to 52°C. Nevertheless, spectrophotometry and mass spectrometric analysis showed that the medium after heating to 52°C was richer in terms of the content of substances absorbing light with a short wavelength. We assume that mass hydrolysis of nucleic acids supports the growth of surviving cells under conditions of deficiency of an available nitrogen source.
Keywords
АР-3-комплекс азотное голодание регулируемая клеточная смерть вакуоль дрожжи
Date of publication
06.07.2025
Year of publication
2025
Number of purchasers
0
Views
105

References

  1. 1. Aubin, H.-J., Berlin, I., and Kornreich, C. (2013) The evolutionary puzzle of suicide, Int. J. Environ. Res. Public Health, 10, 6873-6886, https://doi.org/10.3390/ijerph10126873.
  2. 2. Refardt, D., Bergmiller, T., and Kümmerli, R. (2013) Altruism can evolve when relatedness is low: evidence from bacteria committing suicide upon phage infection, Proc. Biol. Sci., 280, 20123035, https://doi.org/10.1098/rspb.2012.3035.
  3. 3. Berngruber, T. W., Lion, S., and Gandon, S. (2013) Evolution of suicide as a defence strategy against pathogens in a spatially structured environment, Ecol. Lett., 16, 446-453, https://doi.org/10.1111/ele.12064.
  4. 4. Ramisetty, B. C. M., and Sudhakari, P. A. (2020) “Bacterial Programmed Cell Death”: cellular altruism or genetic selfism? FEMS Microbiol. Lett., 367, fnaa141, https://doi.org/10.1093/femsle/fnaa141.
  5. 5. Popp, P. F., and Mascher, T. (2019) Coordinated cell death in isogenic bacterial populations: Sacrificing some for the benefit of many? J. Mol. Biol., 431, 4656-4669, https://doi.org/10.1016/j.jmb.2019.04.024.
  6. 6. Van Dyken, J. D., and Zee, P. C. (2024) Disentangling the factors selecting for unicellular programmed cell death, Am. Nat., 204, 468-481, https://doi.org/10.1086/732199.
  7. 7. Fröhlich, K. U., and Madeo, F. (2000) Apoptosis in yeast – a monocellular organism exhibits altruistic behaviour, FEBS Lett, 473, 6-9, https://doi.org/10.1016/s0014-5793 (00)01474-5.
  8. 8. King, A., and Gottlieb, E. (2009) Glucose metabolism and programmed cell death: an evolutionary and mechanistic perspective, Curr. Opin. Cell Biol., 21, 885-893, https://doi.org/10.1016/j.ceb.2009.09.009.
  9. 9. Dubravcic, D., van Baalen, M., and Nizak, C. (2014) An evolutionarily significant unicellular strategy in response to starvation in Dictyostelium social amoebae, F1000Res., 3, 133, https://doi.org/10.12688/f1000research.4218.2.
  10. 10. Kireeva, N., Galkina, K., Sokolov, S., and Knorre, D. (2022) Role of dead cells in collective stress tolerance in microbial communities: evidence from yeast, Biochemistry (Moscow), 87, 1528-1534, https://doi.org/10.1134/S0006297922120100.
  11. 11. Grosfeld, E. V., Bidiuk, V. A., Mitkevich, O. V., Ghazy, E. S. M. O., Kushnirov, V. V., and Alexandrov, A. I. (2021) A systematic survey of characteristic features of yeast cell death triggered by external factors, J. Fungi (Basel), 7, 886, https://doi.org/10.3390/jof7110886.
  12. 12. Chaves, S. R., Rego, A., Martins, V. M., Santos-Pereira, C., Sousa, M. J., and Côrte-Real, M. (2021) Regulation of cell death induced by acetic acid in yeasts, Front. Cell Dev. Biol., 9, 642375, https://doi.org/10.3389/fcell.2021.642375.
  13. 13. Pyatrikas, D. V., Fedoseeva, I. V., Varakina, N. N., Rusaleva, T. M., Stepanov, A. V., Fedyaeva, A. V., Borovskii, G. B., and Rikhvanov, E. G. (2015) Relation between cell death progression, reactive oxygen species production and mitochondrial membrane potential in fermenting Saccharomyces cerevisiae cells under heat-shock conditions, FEMS Microbiol. Lett., 362, fnv082, https://doi.org/10.1093/femsle/fnv082.
  14. 14. Phillips, A. J., Sudbery, I., and Ramsdale, M. (2003) Apoptosis induced by environmental stresses and amphotericin B in Candida albicans, Proc. Natl. Acad. Sci. USA, 100, 14327-14332, https://doi.org/10.1073/pnas.2332326100.
  15. 15. Büttner, S., Eisenberg, T., Herker, E., Carmona-Gutierrez, D., Kroemer, G., and Madeo, F. (2006) Why yeast cells can undergo apoptosis: death in times of peace, love, and war, J. Cell Biol., 175, 521-525, https://doi.org/10.1083/jcb.200608098.
  16. 16. Rockenfeller, P., and Madeo, F. (2008) Apoptotic death of ageing yeast, Exp. Gerontol., 43, 876-881, https://doi.org/10.1016/j.exger.2008.08.044.
  17. 17. Fabrizio, P., Battistella, L., Vardavas, R., Gattazzo, C., Liou, L.-L., Diaspro, A., Dossen, J. W., Gralla, E. B., and Longo, V. D. (2004) Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae, J. Cell Biol., 166, 1055-1067, https://doi.org/10.1083/jcb.200404002.
  18. 18. Eastwood, M. D., Cheung, S. W. T., Lee, K. Y., Moffat, J., and Meneghini, M. D. (2012) Developmentally programmed nuclear destruction during yeast gametogenesis, Dev. Cell, 23, 35-44, https://doi.org/10.1016/j.devcel.2012.05.005.
  19. 19. Eastwood, M. D., and Meneghini, M. D. (2015) Developmental coordination of gamete differentiation with programmed cell death in sporulating yeast, Eukaryot. Cell, 14, 858-867, https://doi.org/10.1128/EC.00068-15.
  20. 20. Aram, L., and Arama, E. (2012) Sporoptosis: sowing the seeds of nuclear destruction, Dev. Cell, 23, 5-6, https://doi.org/10.1016/j.devcel.2012.06.016.
  21. 21. Cowles, C. R., Odorizzi, G., Payne, G. S., and Emr, S. D. (1997) The AP-3 adaptor complex is essential for cargo-selective transport to the yeast vacuole, Cell, 91, 109-118, https://doi.org/10.1016/s0092-8674 (01)80013-1.
  22. 22. Anand, V. C., Daboussi, L., Lorenz, T. C., and Payne, G. S. (2009) Genome-wide analysis of AP-3-dependent protein transport in yeast, Mol. Biol. Cell, 20, 1592-1604, https://doi.org/10.1091/mbc.e08-08-0819.
  23. 23. Panek, H. R., Stepp, J. D., Engle, H. M., Marks, K. M., Tan, P. K., Lemmon, S. K., and Robinson, L. C. (1997) Suppressors of YCK-encoded yeast casein kinase 1 deficiency define the four subunits of a novel clathrin AP-like complex, EMBO J., 16, 4194-4204, https://doi.org/10.1093/emboj/16.14.4194.
  24. 24. Sun, B., Chen, L., Cao, W., Roth, A. F., and Davis, N. G. (2004) The yeast casein kinase Yck3p is palmitoylated, then sorted to the vacuolar membrane with AP-3-dependent recognition of a YXXPhi adaptin sorting signal, Mol. Biol. Cell, 15, 1397-1406, https://doi.org/10.1091/mbc.E03-09-0682.
  25. 25. Stolp, Z. D., Kulkarni, M., Liu, Y., Zhu, C., Jalisi, A., Lin, S., Casadevall, A., Cunningham, K. W., Pineda, F. J., Teng, X., and Hardwick, J. M. (2022) Yeast cell death pathway requiring AP-3 vesicle trafficking leads to vacuole/lysosome membrane permeabilization, Cell Rep., 39, 110647, https://doi.org/10.1016/j.celrep.2022.110647.
  26. 26. Scherrer, R., Louden, L., and Gerhardt, P. (1974) Porosity of the yeast cell wall and Membrane1, J. Bacteriol., 118, 534-540, https://doi.org/10.1128/jb.118.2.534-540.1974.
  27. 27. De Nobel, J. G., and Barnett, J. A. (1991) Passage of molecules through yeast cell walls: a brief essay-review, Yeast, 7, 313-323, https://doi.org/10.1002/yea.320070402.
  28. 28. Eisler, H., Fröhlich, K.-U., and Heidenreich, E. (2004) Starvation for an essential amino acid induces apoptosis and oxidative stress in yeast, Exp. Cell Res., 300, 345-353, https://doi.org/10.1016/j.yexcr.2004.07.025.
  29. 29. Maruyama, Y., Ito, T., Kodama, H., and Matsuura, A. (2016) Availability of amino acids extends chronological lifespan by suppressing hyper-acidification of the environment in Saccharomyces cerevisiae, PLoS One, 11, e0151894, https://doi.org/10.1371/journal.pone.0151894.
  30. 30. Sherman, F. (2002) Getting started with yeast, In Methods in Enzymology (Guthrie, C., and Fink, G. R., eds) Academic Press, p. 3-41, https://doi.org/10.1016/S0076-6879 (02)50954-X.
  31. 31. Trofimova, L., Ksenofontov, A., Mkrtchyan, G., Graf, A., Baratova, L., and Bunik, V. (2016) Quantification of rat brain amino acids: Analysis of the data consistency, Curr. Anal. Chem., 2, 349-356, https://doi.org/10.2174/1573411011666151006220356.
  32. 32. Ewald, J. C. (2018) How yeast coordinates metabolism, growth and division, Curr. Opin. Microbiol., 45, 1-7, https://doi.org/10.1016/j.mib.2017.12.012
  33. 33. Soifer, I., and Barkai, N. (2014) Systematic identification of cell size regulators in budding yeast, Mol. Syst. Biol., 10, 761, https://doi.org/10.15252/msb.20145345.
  34. 34. Dorsey, S., Tollis, S., Cheng, J., Black, L., Notley, S., Tyers, M., and Royer, C. A. (2018) G1/S transcription factor copy number is a growth-dependent determinant of cell cycle commitment in yeast, Cell Syst., 6, 539-554.e11, https://doi.org/10.1016/j.cels.2018.04.012.
  35. 35. Friedson, B., and Cooper, K. (2022) Transcriptional role of the Cdk8 kinase module with protein synthesis machinery before and after nitrogen starvation, FASEB J., 36, https://doi.org/10.1096/fasebj.2022.36.S1.L8038.
  36. 36. Ansari, S. A., and Morse, R. H. (2013) Mechanisms of Mediator complex action in transcriptional activation, Cell. Mol. Life Sci., 70, 2743-2756, https://doi.org/10.1007/s00018-013-1265-9.
  37. 37. Hanley, S. E., Willis, S. D., Friedson, B., and Cooper, K. F. (2024) Med13 is required for efficient P-body recruitment and autophagic degradation of Edc3 following nitrogen starvation, Mol. Biol. Cell, 35, ar142, https://doi.org/10.1091/mbc.E23-12-0470.
  38. 38. Hurst, L. R., and Fratti, R. A. (2020) Lipid rafts, sphingolipids, and ergosterol in yeast vacuole fusion and maturation, Front. Cell Dev. Biol., 8, 539, https://doi.org/10.3389/fcell.2020.00539.
  39. 39. Sokolov, S. S., Vorobeva, M. A., Smirnova, A. I., Smirnova, E. A., Trushina, N. I., Galkina, K. V., Severin, F. F., and Knorre, D. A. (2020) LAM genes contribute to environmental stress tolerance but sensibilize yeast cells to azoles, Front. Microbiol., 11, 38, https://doi.org/10.3389/fmicb.2020.00038.
  40. 40. Choy, H.L., Gaylord, E.A., and Doering, T.L. (2024) LAMinar flow: Sterol transport in a pathogenic yeast, Contact (Thousand Oaks), 7, 25152564241237625, https://doi.org/10.1177/25152564241237625.
  41. 41. Sokolov, S. S., Trushina, N. I., Severin, F. F., and Knorre, D. A. (2019) Ergosterol turnover in yeast: an interplay between biosynthesis and transport, Biochemistry (Moscow), 84, 346-357, https://doi.org/10.1134/S0006297919040023.
  42. 42. Neidhardt, F. C., and Magasanik, B. (1960) Studies on the role of ribonucleic acid in the growth of bacteria, Biochim. Biophys. Acta, 42, 99-116, https://doi.org/10.1016/0006-3002 (60)90757-5.
  43. 43. Burdon, R. H. (1971) Ribonucleic acid maturation in animal cells, Prog. Nucleic Acid Res. Mol. Biol., 11, 33-79, https://doi.org/10.1016/s0079-6603 (08)60325-6.
  44. 44. Huang, H., Kawamata, T., Horie, T., Tsugawa, H., Nakayama, Y., Ohsumi, Y., and Fukusaki, E. (2015) Bulk RNA degradation by nitrogen starvation-induced autophagy in yeast, EMBO J., 34, 154-168, https://doi.org/10.15252/embj.201489083.
  45. 45. Tanguler, H., and Erten, H. (2008) Utilisation of spent brewer’s yeast for yeast extract production by autolysis: the effect of temperature, Food Bioprod. Process., 86, 317-321, https://doi.org/10.1016/j.fbp.2007.10.015.
  46. 46. Orban, E., Quaglia, G. B., Casini, I., and Moresi, M. (1994) Effect of temperature and yeast concentration on the autolysis of Kluyverommyces fragilis grown on lactose-based media, J. Food Eng., 21, 245-261, https://doi.org/10.1016/0260-8774 (94)90190-2.
  47. 47. Alves, E. M., Souza, J. F., and Oliva Neto, P. (2021) Advances in yeast autolysis technology – a faster and safer new bioprocess, Braz. J. Food Technol., 21, e2020249, https://doi.org/10.1590/1981-6723.24920.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library