- Код статьи
- S30345294S0320972525070112-1
- DOI
- 10.7868/S3034529425070112
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 90 / Номер выпуска 7
- Страницы
- 1028-1042
- Аннотация
- Одним из адаптационных механизмов фотосинтезирующих организмов к условиям освещения является перераспределение антенных комплексов между фотосистемами, процесс «изменения состояний», называемый в англоязычной литературе state transitions (ST), который позволяет регулировать количество поглощаемой световой энергии фотосистемами. В литературе многократно показано ингибирование протекания ST при повышении освещенности, однако механизм этого ингибирования до сих пор обсуждается. В настоящей работе изучали влияние HO в разных концентрациях на протекание процесса ST; кроме того, оценивали, на какой из этапов данного процесса влияет HO. Объектом исследования являлись функционально активные тилакоиды, изолированные из листьев арабидопсиса. Для оценки протекания ST измеряли спектры низкотемпературной флуоресценции хлорофилла a (F, 650–780 нм) и рассчитывали отношение F/F, изменение которого может служить индикатором протекания ST. Показано, что добавка HO приводила к ингибированию ST при освещении тилакоидов светом низкой интенсивности. Кроме того, добавка HO к тилакоидам при низкой интенсивности света приводила к снижению накопления фосфорилированных белков Lhcb1 и Lhcb2, участвующих в ST; это указывает на то, что ингибирование этого процесса является результатом ингибирования активности STN7-киназы. Важно отметить, что HO в выбранных концентрациях не влиял на скорость электронного транспорта, свидетельствуя о том, что ингибирование активности STN7-киназы не связано с ингибированием активности фотосинтетической электрон-транспортной цепи. Кроме того, при добавке HO не наблюдалось снижения уровня фосфорилированного белка реакционного центра ФС2 – D1, являющегося продуктом фосфорилирования тилакоидной STN8-киназы. Таким образом, в работе впервые показан механизм ингибирования активности STN7-киназы и, соответственно, процесса ST.
- Ключевые слова
- фотосинтез фосфорилирование перераспределение светособирающих комплексов светособирающая антенна пероксид водорода
- Дата публикации
- 04.02.2026
- Год выхода
- 2026
- Всего подписок
- 0
- Всего просмотров
- 84
Библиография
- 1. Grossman, A. R., Bhaya, D., Apt, K. E., and Kehoe, D. M. (1995) Light-harvesting complexes in oxygenic photosynthesis: diversity, control, and evolution, Annu. Rev. Genet., 29, 231-288, https://doi.org/10.1146/annurev. ge.29.120195.001311.
- 2. Kirchhoff, H. (2014) Diffusion of molecules and macromolecules in thylakoid membranes, Biochim. Biophys Acta Bioenergetics, 1837, 495-502, https://doi.org/10.1016/j.bbabio.2013.11.003.
- 3. Liguori, N., Periole, X., Marrink, S. J., and Croce, R. (2015) From light-harvesting to photoprotection: structural basis of the dynamic switch of the major antenna complex of plants (LHCII), Sci Rep., 5, 15661, https://doi.org/10.1038/srep15661.
- 4. Pribil, M., Pesaresi, P., Hertle, A., Barbato, R., and Leister, D. (2010) Role of plastid protein phosphatase TAP38 in LHCII dephosphorylation and thylakoid electron flow, PLoS Biol., 8, e1000288, https://doi.org/10.1371/journal. pbio.1000288.
- 5. Shapiguzov, A., Ingelsson, B., Samol, I., Andres, C., Kessler, F., Rochaix, J.-D., Vener, A., and Goldschmidt-Clermont, M. (2010) The PPH1 phosphatase is specifically involved in LHCII dephosphorylation and state transitions in Arabidopsis, Proc. Natl. Acad. Sci. USA, 107, 4782-4787, https://doi.org/10.1073/pnas.0913810107.
- 6. Galka, P., Santabarbara, S., Khuong, T. T. H., Degand, H., Morsomme, P., Jennings, R. C., Boekema, E. G., and Caffarri, S. (2012) Functional analyses of the plant photosystem I-light-harvesting complex II supercomplex reveal that light-harvesting complex II loosely bound to photosystem II is a very efficient antenna for photosystem I in state II, Plant Cell, 24, 2963-2978, https://doi.org/10.1105/tpc.112.100339.
- 7. Wientjes, E., van Amerongen, H., and Croce, R. (2013) LHCII is an antenna of both photosystems after long-term acclimation, Biochim. Biophys. Acta, 1827, 420-426, https://doi.org/10.1016/j.bbabio.2012.12.009.
- 8. Crepin, A., and Caffarri, S. (2015) The specific localizations of phosphorylated Lhcb1 and Lhcb2 isoforms reveal the role of Lhcb2 in the formation of the PSI-LHCII supercomplex in Arabidopsis during state transitions, Biochim. Biophys. Acta Bioenergetics, 1847, 1539-1548, https://doi.org/10.1016/j.bbabio. 2015.09.005.
- 9. Longoni, P., Douchi, D., Cariti, F., Fucile, G., and Goldschmidt-Clermont, M. (2015) Phosphorylation of the light-harvesting complex II isoform Lhcb2 is central to state transitions, Plant Physiol., 169, 2874-2883, https://doi.org/10.1104/pp.15.01498.
- 10. Pietrzykowska, M., Suorsa, M., Semchonok, D. A., Tikkanen, M., Boekema, E. J., Aro, E.-M., and Jansson, S. (2014) The light-harvesting chlorophyll a/b binding proteins Lhcb1 and Lhcb2 play complementary roles during state transitions in Arabidopsis, Plant Cell, 26, 3646-3660, https://doi.org/10.1105/tpc.114.127373.
- 11. Wood, W. H. J., Barnett, S. F. H., Flannery, S., Hunter, C. N., and Johnson, M. P. (2019) Dynamic thylakoid stacking is regulated by LHCII phosphorylation but not its interaction with PSI, Plant Physiol., 180, 2152-2166, https://doi.org/10.1104/pp.19.00503.
- 12. Rintamäki, E., Salonen, M., Suoranta, U. M., Carlberg, I., Andersson, B., and Aro, E. M. (1997) Phosphorylation of light-harvesting complex II and photosystem II core proteins shows different irradiance-dependent regulation in vivo. Application of phosphothreonine antibodies to analysis of thylakoid phosphoproteins, J. Biol. Chem., 272, 30476-30482, https://doi.org/10.1074/jbc.272.48.30476.
- 13. Lemeille, S., and Rochaix, J.-D. (2010) State transitions at the crossroad of thylakoid signalling pathways, Photosynth Res., 106, 33-46, https://doi.org/10.1007/s11120-010-9538-8.
- 14. Mekala, N. R., Suorsa, M., Rantala, M., Aro, E.-M., and Tikkanen, M. (2015) Plants actively avoid state transitions upon changes in light intensity: role of light-harvesting complex II protein dephosphorylation in high light, Plant Physiol., 168, 721-734, https://doi.org/10.1104/pp.15.00488.
- 15. Ветошкина Д. В., Козулева М. А., Терентьев В. В., Надеева Е. М., Борисова-Мубаракшина М. М., Иванов Б. Н. (2019) Сравнение изменений состояния фотосинтетической антенны арабидопсиса и ячменя при действии света разной интенсивности, Биохимия, 84, 1311-1321, https://doi.org/10.1134/S0320972519090094.
- 16. Vetoshkina, D. V., and Borisova-Mubarakshina, M. M. (2023) Reversible protein phosphorylation in higher plants: focus on state transitions, Biophys Rev., 15, 1079-1093, https://doi.org/10.1007/s12551-023-01116-y.
- 17. Lemeille, S., Willig, A., Depège-Fargeix, N., Delessert, C., Bassi, R., and Rochaix, J.-D. (2009) Analysis of the chloroplast protein kinase Stt7 during state transitions, PLoS Biol., 7, e1000045, https://doi.org/10.1371/journal. pbio.1000045.
- 18. Depège, N., Bellafiore, S., and Rochaix, J.-D. (2003) Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas, Science, 299, 1572-1575, https://doi.org/10.1126/science.1081397.
- 19. Shapiguzov, A., Chai, X., Fucile, G., Longoni, P., Zhang, L., and Rochaix, J.-D. (2016) Activation of the Stt7/STN7 kinase through dynamic interactions with the cytochrome b6f complex1, Plant Physiol., 171, 82-92, https://doi.org/10.1104/pp.15.01893.
- 20. Zito, F., Finazzi, G., Delosme, R., Nitschke, W., Picot, D., and Wollman, F. A. (1999) The Qo site of cytochrome b6f complexes controls the activation of the LHCII kinase, EMBO J., 18, 2961-2969, https://doi.org/10.1093/emboj/18.11.2961.
- 21. Bellafiore, S., Barneche, F., Peltier, G., and Rochaix, J.-D. (2005) State transitions and light adaptation require chloroplast thylakoid protein kinase STN7, Nature, 433, 892-895, https://doi.org/10.1038/nature03286.
- 22. Wu, J., Rong, L., Lin, W., Kong, L., Wei, D., Zhang, L., Rochaix, J.-D., and Xu, X. (2021) Functional redox links between lumen thiol oxidoreductase1 and serine/threonine-protein kinase STN7, Plant Physiol., 186, 964-976, https://doi.org/10.1093/plphys/kiab091.
- 23. Singh, S. K., Hasan, S. S., Zakharov, S. D., Naurin, S., Cohn, W., Ma, J., Whitelegge, J.P., and Cramer, W. A. (2016) Trans-membrane signaling in photosynthetic state transitions: redoxand structure-dependent interaction in vitro between STT7 kinase and the cytochrome b6f complex, J. Biol. Chem., 291, 21740-21750, https://doi.org/10.1074/jbc.M116.732545.
- 24. Puthiyaveetil, S. (2011) A mechanism for regulation of chloroplast LHC II kinase by plastoquinol and thioredoxin, FEBS Lett., 585, 1717-1721, https://doi.org/10.1016/j.febslet.2011.04.076.
- 25. Rintamäki, E., Martinsuo, P., Pursiheimo, S., and Aro, E. M. (2000) Cooperative regulation of light-harvesting complex II phosphorylation via the plastoquinol and ferredoxin-thioredoxin system in chloroplasts, Proc. Natl. Acad. Sci. USA, 97, 11644-11649, https://doi.org/10.1073/pnas.180054297.
- 26. Ancín, M., Fernández-San Millán, A., Larraya, L., Morales, F., Veramendi, J., Aranjuelo, I., and Farran, I. (2019) Overexpression of thioredoxin m in tobacco chloroplasts inhibits the protein kinase STN7 and alters photosynthetic performance, J. Exp. Bot., 70, 1005-1016, https://doi.org/10.1093/jxb/ery415.
- 27. Calvo, I. A., Boronat, S., Domènech, A., García-Santamarina, S., Ayté, J., and Hidalgo, E. (2013) Dissection of a redox relay: H2O2-dependent activation of the transcription factor Pap1 through the peroxidatic Tpx1-thioredoxin cycle, Cell Rep., 5, 1413-1424, https://doi.org/10.1016/j.celrep.2013.11.027.
- 28. Kim, J.-R., Yoon, H. W., Kwon, K.-S., Lee, S.-R., and Rhee, S. G. (2000) Identification of proteins containing cysteine residues that are sensitive to oxidation by hydrogen peroxide at neutral pH, Anal. Biochem., 283, 214-221, https://doi.org/10.1006/abio.2000.4623.
- 29. Chen, K., Vita, J. A., Berk, B. C., and Keaney, J. J. (2001) c-Jun N-terminal kinase activation by hydrogen peroxide in endothelial cells involves SRC-dependent epidermal growth factor receptor transactivation, J. Biol. Chem., 276, 16045-16050, https://doi.org/10.1074/jbc.M011766200.
- 30. Guyton, K. Z., Liu, Y., Gorospe, M., Xu, Q., and Holbrook, N. J. (1996) Activation of mitogen-activated protein kinase by HO role in cell survival following oxidant injury, J. Biol. Chem., 271, 4138-4142, https://doi.org/10.1074/jbc.271.8.4138.
- 31. Vetoshkina, D. V., Borisova-Mubarakshina, M. M., Naydov, I. A., Kozuleva, M. A., and Ivanov, B. N. (2015) Impact of high light on reactive oxygen species production within photosynthetic biological membranes, J. Biol. Life Sci., 6, https://doi.org/10.5296/jbls.v6i2.7277.
- 32. Khorobrykh, S. A., Karonen, M., and Tyystjärvi, E. (2015) Experimental evidence suggesting that H2O2 is produced within the thylakoid membrane in a reaction between plastoquinol and singlet oxygen, FEBS Lett., 589, 779-786, https://doi.org/10.1016/j.febslet.2015.02.011.
- 33. Vetoshkina, D., Balashov, N., Ivanov, B., Ashikhmin, A., and Borisova-Mubarakshina, M. (2023) Light harvesting regulation: a versatile network of key components operating under various stress conditions in higher plants, Plant Physiol. Biochem., 194, 576-588, https://doi.org/10.1016/j.plaphy.2022.12.002.
- 34. Roach, T., Na, C. S., and Krieger-Liszkay, A. (2015) High light-induced hydrogen peroxide production in Chlamydomonas reinhardtii is increased by high CO2 availability, Plant J., 81, 759-766, https://doi.org/10.1111/tpj.12768.
- 35. Casazza, A. P., Tarantino, D., and Soave, C. (2001) Preparation and functional characterization of thylakoids from Arabidopsis thaliana, Photosynth. Res., 68, 175-180, https://doi.org/10.1023/A:1011818021875.
- 36. Lichtenthaler, H. K. (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes, in Methods in Enzymology, Academic Press, vol. 148, pp. 350-382, https://doi.org/10.1016/0076-6879 (87)48036-1.
- 37. McCormac, D. J., Bruce, D., and Greenberg, B. M. (1994) State transitions, light-harvesting antenna phosphorylation and light-harvesting antenna migration in vivo in the higher plant Spirodela oligorrhiza, Biochim. Biophys. Acta Bioenergetics, 1187, 301-312, https://doi.org/10.1016/0005-2728 (94)90004-3.
- 38. Mubarakshina, M. M., Ivanov, B. N., Naydov, I. A., Hillier, W., Badger, M. R., and Krieger-Liszkay, A. (2010) Production and diffusion of chloroplastic H2O2 and its implication to signalling, J. Exp. Bot., 61, 3577-3587, https://doi.org/10.1093/jxb/erq171.
- 39. Bonardi, V., Pesaresi, P., Becker, T., Schleiff, E., Wagner, R., Pfannschmidt, T., Jahns, P., and Leister, D. (2005) Photos ystem II core phosphorylation and photosynthetic acclimation require two different protein kinases, Nature, 437, 1179-1182, https://doi.org/10.1038/nature04016.
- 40. Vainonen, J. P., Hansson, M., and Vener, A. V. (2005) STN8 Protein kinase in Arabidopsis thaliana is specific in phosphorylation of photosystem II core proteins, J. Biol. Chem., 280, 33679-33686, https://doi.org/10.1074/jbc. M505729200.
- 41. Hommel, E., Liebers, M., Offermann, S., and Pfannschmidt, T. (2021) Effectiveness of light-quality and dark-white growth light shifts in short-term light acclimation of photosynthesis in Arabidopsis, Front. Plant Sci., 12, 615253, https://doi.org/10.3389/fpls.2021.615253.
- 42. Oung, H. M. O., Koochak, H., Krysiak, M., Svoboda, V., and Kirchhoff, H. (2024) A holistic quantitative understanding of state transition in plant photosynthesis, bioRxiv, 2024.06.21.600050, https://doi.org/10.1101/2024.06.21.600050.
- 43. Saito, A., Shimizu, M., Nakamura, H., Maeno, S., Katase, R., Miwa, E., Higuchi, K., and Sonoike, K. (2014) Fe deficiency induces phosphorylation and translocation of Lhcb1 in barley thylakoid membranes, FEBS Lett., 588, 2042-2048, https://doi.org/10.1016/j.febslet.2014.04.031.
- 44. Nellaepalli, S., Mekala, N. R., Zsiros, O., Mohanty, P., and Subramanyam, R. (2011) Moderate heat stress induces state transitions in Arabidopsis thaliana, Biochim. Biophys. Acta Bioenergetics, 1807, 1177-1184, https://doi.org/10.1016/j.bbabio.2011.05.016.
- 45. Vener, A. V., van Kan, P. J. M., Rich, P. R., Ohad, I., and Andersson, B. (1997) Plastoquinol at the quinol oxidation site of reduced cytochrome bf mediates signal transduction between light and protein phosphorylation: thylakoid protein kinase deactivation by a single-turnover flash, Proc. Natl. Acad. Sci. USA, 94, 1585-1590, https://doi.org/10.1073/pnas.94.4.1585.
- 46. Reiland, S., Messerli, G., Baerenfaller, K., Gerrits, B., Endler, A., Grossmann, J., Gruissem, W., and Baginsky, S. (2009) Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks, Plant Physiol., 150, 889-903, https://doi.org/10.1104/pp.109.138677.
- 47. Trotta, A., Suorsa, M., Rantala, M., Lundin, B., and Aro, E.-M. (2016) Serine and threonine residues of plant STN7 kinase are differentially phosphorylated upon changing light conditions and specifically influence the activity and stability of the kinase, Plant J., 87, 484-494, https://doi.org/10.1111/tpj.13213.
- 48. Willig, A., Shapiguzov, A., Goldschmidt-Clermont, M., and Rochaix, J.-D. (2011) The phosphorylation status of the chloroplast protein kinase STN7 of Arabidopsis affects its turnover, Plant Physiol., 157, 2102-2107, https://doi.org/10.1104/pp.111.187328.
- 49. Nellaepalli, S., Kodru, S., Malavath, T., Subramanyam, R. (2013) Change in fast Chl a fluorescence transients, 2 dimensional protein profile and pigment protein interactions during state transitions in Arabidopsis thaliana, J. Photochem. Photobiol. B, 128, 27-34, https://doi.org/10.1016/j.jphotobiol.2013.07.028.
- 50. Cutolo, E. A., Caferri, R., Guardini, Z., Dall’Osto, L., and Bassi, R. (2023) Analysis of state 1 – state 2 transitions by genome editing and complementation reveals a quenching component independent from the formation of PSI-LHCI-LHCII supercomplex in Arabidopsis thaliana, Biol. Direct, 18, 49, https://doi.org/10.1186/s13062023-00406-5.
- 51. Mubarakshina, M., Khorobrykh, S., and Ivanov, B. (2006) Oxygen reduction in chloroplast thylakoids results in production of hydrogen peroxide inside the membrane, Biochim. Biophys. Acta Bioenergetics, 1757, 1496-1503, https://doi.org/10.1016/j.bbabio.2006.09.004.
- 52. Borisova, M. M., Kozuleva, M. A., Rudenko, N. N., Naydov, I. A., Klenina, I. B., and Ivanov, B. N. (2012) Photosynthetic electron flow to oxygen and diffusion of hydrogen peroxide through the chloroplast envelope via aquaporins, Biochim. Biophys. Acta Bioenergetics, 1817, 1314-1321, https://doi.org/10.1016/j.bbabio.2012.02.036.
- 53. Liu, X., Chai, J., Ou, X., Li, M., and Liu, Z. (2019) Structural insights into substrate selectivity, catalytic mechanism, and redox regulation of rice photosystem ii core phosphatase, Mol. Plant, 12, 86-98, https://doi.org/10.1016/j.molp.2018.11.006.
- 54. Tikkanen, M., Piippo, M., Suorsa, M., Sirpiö, S., Mulo, P., Vainonen, J., Vener, A. V., Allahverdiyeva, Y., and Aro, E.-M. (2006) State transitions revisited-a buffering system for dynamic low light acclimation of Arabidopsis, Plant Mol. Biol., 62, 779-793, https://doi.org/10.1007/s11103-006-9044-8.
- 55. Pursiheimo, S., Mulo, P., Rintamäki, E., and Aro, E. M. (2001) Coregulation of light-harvesting complex II phosphorylation and lhcb mRNA accumulation in winter rye, Plant J., 26, 317-327, https://doi.org/10.1046/j.1365313x.2001.01033.x.
- 56. Nellaepalli, S., Kodru, S., and Subramanyam, R. (2012) Effect of cold temperature on regulation of state transitions in Arabidopsis thaliana, J. Photochem. Photobiol. B Biol., 112, 23-30, https://doi.org/10.1016/j.jphotobiol. 2012.04.003.
- 57. Chen, Y., and Hoehenwarter, W. (2015) Changes in the phosphoproteome and metabolome link early signaling events to rearrangement of photosynthesis and central metabolism in salinity and oxidative stress response in Arabidopsis, Plant Physiol., 169, 3021-3033, https://doi.org/10.1104/pp.15.01486.