RAS BiologyБиохимия Biochemistry

  • ISSN (Print) 0320-9725
  • ISSN (Online) 3034-5294

RESTRICTION-MODIFICATION SYSTEMS WITH SPECIFICITY GGATC, GATGC AND GATGG. PART 2. FUNCTIONALITY AND STRUCTURAL ISSUES

PII
S30345294S0320972525040061-1
DOI
10.7868/S3034529425040061
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 90 / Issue number 4
Pages
571-579
Abstract
The structural and functional issues of protein functionality of restriction-modification systems recognizing one of the GGATC/GATCC, GATGC/GCATC, and GATGG/CCATC sites have been studied using bioinformatics methods. Such systems include a single restriction endonuclease and either two separate DNA methyltransferases or a single fusion DNA methyltransferase with two catalytic domains. For a subset of these systems, it was known that both adenines within the site are methylated to form 6-methyladenine, but the role of each of the two DNA methyltransferases comprising the system was unknown. In this work, the functionality of most known systems of this kind is proven. Based on analysis of the structures of related DNA methyltransferases, it is hypothesized which of the adenines within the site is modified by each of the DNA methyltransferases of the system. A possible molecular mechanism of DNA methyltransferase specificity change from GATGG to GATGC during horizontal transfer of its gene is described.
Keywords
система рестрикции-модификации пространственная структура ДНК-метилтрансфераза эндонуклеаза рестрикции горизонтальный перенос генов
Date of publication
25.03.2025
Year of publication
2025
Number of purchasers
0
Views
77

References

  1. 1. Williams, R. J. (2003) Restriction endonucleases: classification, properties, and applications, Mol. Biotechnol., 23, 225-244, https://doi.org/10.1385/mb:23:3:225.
  2. 2. Roberts, R. J. (2003) A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes, Nucleic Acids Res., 31, 1805-1812, https://doi.org/10.1093/nar/gkg274.
  3. 3. Madhusoodanan, U. K., and Rao, D. N. (2010) Diversity of DNA methyltransferases that recognize asymmetric target sequences, Crit. Rev. Biochem. Mol. Biol., 45, 125-145, https://doi.org/10.3109/10409231003628007.
  4. 4. Vasu, K., and Nagaraja, V. (2013) Diverse functions of restriction-modification systems in addition to cellular defense, Microbiol. Mol. Biol. Rev., 77, 53-72, https://doi.org/10.1128/mmbr.00044-12.
  5. 5. Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G. A., Sonnhammer, E. L. L., Tosatto, S. C. E., Paladin, L., Raj, S., Richardson, L. J., Finn, R. D., and Bateman, A. (2020) Pfam: the protein families database in 2021, Nucleic Acids Res., 49, D412-D419, https://doi.org/10.1093/nar/gkaa913.
  6. 6. Roberts, R. J., Vincze, T., Posfai, J., and Macelis, D. (2014) REBASE – a database for DNA restriction and modification: enzymes, genes and genomes, Nucleic Acids Res., 43, D298-D299, https://doi.org/10.1093/nar/gku1046.
  7. 7. Edgar, R. C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res., 32, 1792-1797, https://doi.org/10.1093/nar/gkh340.
  8. 8. Waterhouse, A. M., Procter, J. B., Martin, D. M. A, Clamp, M., and Barton, G. J. (2009) Jalview Version 2 – a multiple sequence alignment editor and analysis workbench, Bioinformatics, 25, 1189-1191, https://doi.org/10.1093/bioinformatics/btp033.
  9. 9. Lefort, V., Desper, R., and Gascuel, O. (2015) FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program, Mol. Biol. Evol., 32, 2798-2800, https://doi.org/10.1093/molbev/msv150.
  10. 10. Kumar, S., Stecher, G., and Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 33, 1870-1874, https://doi.org/10.1093/molbev/msw054.
  11. 11. Letunic, I., and Bork, P. (2021) Interactive Tree Of Life (ITOL) v5: an online tool for phylogenetic tree display and annotation, Nucleic Acids Res., 49, W293-W296, https://doi.org/10.1093/nar/gkab301.
  12. 12. Li, W., and Godzik, A. (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences, Bioinformatics, 22, 1658-1659, https://doi.org/10.1093/bioinformatics/btl158.
  13. 13. Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., and Steinegger, M. (2022) ColabFold: making protein folding accessible to all, Nat. Methods, 19, 679-682, https://doi.org/10.1038/s41592-022-01488-1.
  14. 14. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., et al. (2021) Highly accurate protein structure prediction with AlphaFold, Nature, 596, 583-589, https://doi.org/10.1038/s41586-021-03819-2.
  15. 15. DeLano, W. L. (2002) Pymol: An open-source molecular graphics tool, CCP4 Newsl. Protein Crystallogr., 40, 82-92.
  16. 16. Crooks, G. E., Hon, G., Chandonia, J. M., and Brenner, S. E. (2004) WebLogo: A sequence logo generator, Genome Res., 14, 1188-1190, https://doi.org/10.1101/gr.849004.
  17. 17. Gingeras, T. R., Milazzo, J. P., and Roberts, R. J. (1978). A computer assisted method for the determination of restriction enzyme recognition sites, Nucleic Acids Res., 5, 4105-4127, https://doi.org/10.1093/nar/5.11.4105.
  18. 18. Higgins, L. S., Besnier, C., and Kong, H. (2001) The nicking endonuclease N.BstNBI is closely related to type IIS restriction endonucleases MlyI and PleI, Nucleic Acids Res., 29, 2492-2501, https://doi.org/10.1093/nar/29.12.2492.
  19. 19. Kachalova, G. S., Rogulin, E. A., Yunusova, A. K., Artyukh, R. I., Perevyazova, T. A., Matvienko, N. I., Zheleznaya, L. A., and Bartunik, H. D. (2008) Structural analysis of the heterodimeric type IIS restriction endonuclease R.BspD61 acting as a complex between a monomeric site-specific nickase and a catalytic subunit, J. Mol. Biol., 384, 489-502, https://doi.org/10.1016/j.jmb.2008.09.033.
  20. 20. Malone, T., Blumenthal, R. M., and Cheng, X. (1995) Structure-guided analysis reveals nine sequence motifs conserved among DNA amino-methyltransferases, and suggests a catalytic mechanism for these enzymes, J. Mol. Biol., 253, 618-632, https://doi.org/10.1006/jmbi.1995.0577.
  21. 21. Yang, Z., Horton, J. R., Zhou, L., Zhang, X. J., Dong, A., Zhang, X., Schlagman, S. L., Kossykh, V., Hattman, S., and Cheng, X. (2003) Structure of the bacteriophage T4 DNA adenine methyltransferase, Nat. Struct. Biol., 10, 849-855, https://doi.org/10.1038/nsb973.
  22. 22. Horton, J. R., Liebert, K., Hattman, S., Jeltsch, A., and Cheng, X. (2005) Transition from nonspecific to specific DNA interactions along the substrate-recognition pathway of dam methyltransferase, Cell, 121, 349-361, https://doi.org/10.1016/j.cell.2005.02.021.
  23. 23. Horton, J. R., Liebert, K., Bekes, M., Jeltsch, A., and Cheng, X. (2006) Structure and substrate recognition of the Escherichia coli DNA adenine methyltransferase, J. Mol. Biol., 358, 559-570, https://doi.org/10.1016/j.jmb.2006.02.028.
  24. 24. Nell, S., Estibariz, I., Krebes, J., Bunk, B., Graham, D. Y., Overmann, J., Song, Y., Spröer, C., Yang, I., Wex, T., Korlach, J., Malfertheimer, P., and Suerbaum, S. (2018) Genome and methylome variation in Helicobacter pylori with a cag pathogenicity island during early stages of human infection, Gastroenterology, 154, 612-623, https://doi.org/10.1053/j.gastro.2017.10.014.
  25. 25. Friedrich, T., Fatemi, M., Gowhar, H., Leismann, O., and Jeltsch, A. (2000) Specificity of DNA binding and methylation by the M.FokI DNA methyltransferase, Biochim. Biophys. Acta, 1480, 145-159, https://doi.org/10.1016/s0167-4838 (00)00065-0.
  26. 26. Tomilova, J. E., Kuznetsov, V. V., Abdurashitov, M. A., Netesova, N. A., and Degtyarev, S. K. (2010) Recombinant DNA-methyltransferase M1.Bst191 from Bacillus stearothermophilus 19: purification, properties, and amino acid sequence analysis, Mol. Biol., 44, 606-615, https://doi.org/10.1134/S0026893310040163.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library