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Разработан подход для определения каталитической активности главной протеазы SARS-CoV-2 
(Mpro), основанный на регистрации площади пика электрохимического окисления остатка тиро-
зина модельного пептидного субстрата CGGGAVLQSGY, иммобилизованного на поверхности пе-
чатного графитового электрода (ПГЭ), модифицированного наночастицами золота (AuНЧ). AuНЧ 
были получены методом электросинтеза. Определены параметры стационарной кинетики Mpro 
по отношению к модельному пептиду: константа каталитическая (kcat)  – (3,1  ±  0,1) · 10−3  c−1; кон-
станта Михаэлиса (KM)  – (358  ±  32) · 10−9  М; эффективность катализа (kcat/KM)  – 8659  c−1/М. Предел 
обнаружения (LOD) для Mpro с помощью разработанной электрохимической системы был опре-
делён как 44  нМ. Разработанный подход перспективен для поиска новых ингибиторов Mpro 
в  качестве лекарственных препаратов для лечения коронавирусных инфекций.

КЛЮЧЕВЫЕ СЛОВА: протеаза Mpro, электроокисление тирозина, модифицированные электроды, 
наночастицы золота, модельный пептид.
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Принятые сокращения: ПГЭ  – печатный графитовый электрод; AuНЧ  – наночастицы золота; DABCYL  – 
4-((4-(диметиламино)фенил)азо)бензоевая кислота; EDANS  – 5-((2-аминоэтил)амино)нафтален-1-cульфоновая 
кислота; FRET  – фёрстеровский резонансный перенос энергии.
* Адресат для корреспонденции.

ВВЕДЕНИЕ

Главные протеазы коронавирусов (Mpro), также 
известные как 3C-подобные протеазы (3CLpro) или 
неструктурные белки  5 (Nsp5), являются высоко-
консервативными ферментами группы цистеино-
вых протеаз, играющих важную роль в жизненном 
цикле β-коронавирусов, в том числе коронавиру-
са, вызывающего тяжёлый острый респиратор-
ный синдром 2 (SARS-CoV-2) [1, 2]. Функция данной  
группы ферментов состоит в посттрансляционном 
процессинге белков pp1a и pp1b, необходимых для 
процессов инвазии, репликации и транскрипции 
вирусов  [1, 3, 4]. Mpro SARS-CoV-2 (EC 3.4.22.69)  – го-
модимерный фермент, на 96% идентичный Mpro 

коронавируса тяжёлого острого респираторного 
синдрома (SARS-CoV)  [5]. Этот фермент является 
перспективной мишенью для действия лекар-
ственных препаратов для лечения коронавирус-
ных инфекций  [6]. Mpro обладает рядом уникаль-
ных свойств, что может быть использовано для 
разработки эффективных и селективных препа-
ратов для лечения коронавирусных инфекций, в 
том числе коронавирусного инфекционного забо-
левания 2019  года (COVID-19), не оказывающих 
побочного эффекта на протеазы хозяина  [2, 7–9]. 
Так, например, в связи с отсутствием гомологов 
Mpro среди протеаз в клетках человека, обладаю-
щих специфичностью, схожей с таковой для ко-
ронавирусной протеазы, перспективными соеди-
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нениями для лечения коронавирусных инфекций 
являются пептидомиметики  [6]. Предполагает- 
ся, что использование Mpro, имеющей высокую 
консервативность аминокислотной последова-
тельности и структуры, в качестве мишени для 
терапии коронавирусных инфекций может по-
зволить снизить риск устойчивости к терапии 
новых вариантов коронавирусов  [10,  11]. В связи 
с необходимостью быстрого поиска эффектив-
ной стратегии фармакотерапии коронавирусных 
инфекций в условиях пандемии, ряд препаратов, 
ингибирующих Mpro, был одобрен Управлением 
по санитарному надзору за качеством пищевых 
продуктов и медикаментов (FDA) для примене-
ния в клинической практике. Однако многие из 
одобренных препаратов не соответствуют опти-
мальным параметрам биодоступности, токсично-
сти и эффективности  [12]. Более того, появление 
новых штаммов вирусов, в том числе имеющих 
мутантные формы Mpro, обусловливает их резис-
тентность к одобренным препаратам и делает 
необходимым поиск новых противовирусных 
препаратов для лечения коронавирусных инфек- 
ций  [12,  13].

Представленные в литературе значения кине-
тических параметров Mpro находятся в широком 
диапазоне. Отсутствие консенсуса о кинетических 
параметрах данного фермента усложняет объек-
тивную и точную оценку ингибиторных свойств 
новых соединений  [7]. На данный момент суще-
ствуют различные подходы к изучению свойств 
протеаз, основанные на использовании в каче-
стве субстратов меченых пептидов  [14]. Ранее 
для изучения кинетики Mpro были использованы 
методы, основанные на фёрстеровском резонанс-
ном переносе энергии (FRET) и жидкостной хро-
матографии с масс-спектрометрией (LC-MS), при 
этом последний подход характеризуется высокой 
трудоёмкостью  [7]. Подходы с использованием 
FRET также имеют ряд недостатков, таких как 
искажение реальных значений кинетических 
параметров фермента из-за снижения фактиче-
ской интенсивности флуоресценции вследствие 
межмолекулярных взаимодействий молекулы 
гасителя, 4-((4-(диметиламино)фенил)азо)бензое-
вой кислоты (DABCYL), и флуорофора, 5-((2-амино
этил)амино)нафтален-1-cульфоновой кислоты 
(EDANS)  [1,  7]. Кроме того, использование суб-
стратов, меченных парами гаситель-флуорофор, 
сопряжено с трудоёмким процессом их синтеза 
и низкой стабильностью при длительном хране-
нии  [1,  7,  15,  16]. В связи с этим представляется 
актуальной разработка новых, высокоэффектив-
ных и удобных в практическом использовании 
систем для определения протеазной активности 
Mpro, позволяющих охарактеризовать кинетиче-
ские параметры данного фермента и проводить 

анализ ингибиторной активности новых соеди-
нений, перспективных для лечения COVID-19  [1, 
16, 17].

Электрохимические системы, основанные на 
использовании модельных пептидов для опреде-
ления каталитической активности протеаз, име-
ют особое значение, поскольку обладают высокой 
чувствительностью и малым объёмом исполь-
зуемого аналита  [16,  18,  19]. Распространённым 
принципом электрохимических систем для опре-
деления протеазной активности является подход 
«Signal-off», позволяющий регистрировать актив-
ность протеаз по снижению сигнала (тока и/или 
площади пика) электрохимического окисления 
или восстановления дополнительных редокс-
меток, включённых в состав иммобилизованных 
на поверхности электрода пептидов. Несмотря 
на то что подобный подход широко применяется 
на практике, введение дополнительных меток в 
состав пептидов усложняет процесс их синтеза, а 
также может влиять на кинетические параметры 
ферментов и снижать стабильность аналитиче-
ской системы [20–22]. Таким образом, актуальной 
задачей является разработка и повышение ста-
бильности электрохимических систем без исполь-
зования синтетических меток для определения 
активности протеаз.

Известно, что ряд аминокислот обладает спо-
собностью к необратимому электрохимическому 
окислению  [23–27], что может быть использова-
но для регистрации каталитической активности  
протеаз электрохимическими методами. Так, ти-
розин подвергается электрохимическому окисле-
нию в соответствии со схемой  1.

Ранее мы разработали электрохимическую 
систему для определения активности и специ-
фичности трипсина, основанную на регистра-
ции уменьшения площади пика электрохими-
ческого окисления остатка тирозина модельных 
пептидов, иммобилизованных на поверхности 
печатного графитового электрода (ПГЭ), после 
их протеолитического расщепления  [28]. Пре-
имуществом такого подхода является отсутствие 
необходимости введения дополнительной син-
тетической редокс-метки в процессе получения 
пептидов. Мы предположили, что аналогич-
ный подход может быть применён для создания 
электрохимической системы для определения 

Схема 1. Предполагаемый механизм электрохимиче-
ского окисления тирозина
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активности Mpro. Таким образом, целью настоя-
щей работы явилась разработка электрохими-
ческой системы для определения активности  
Mpro, основанной на регистрации площади пика 
электрохимического окисления остатка тирозина 
модельного пептида, иммобилизованного на по-
верхности ПГЭ.

МАТЕРИАЛЫ И МЕТОДЫ

Реактивы. В данной работе были использова-
ны следующие реактивы: золотохлористоводород-
ной (III) кислоты тригидрат от «Alfa Aesar» (Герма-
ния); дигидрофосфат калия (≥  99%), гидрофосфат 
калия тригидрат (≥  99%), хлорид натрия (99,5%) 
от «Acros Organics» (США); глицерин (≥  99%) от 
«PanReac AppliChem» (Испания); соляная кислота 
(30%) от «Sigma-Aldrich» (США); N-9-фторенил-
метоксикарбонил (Fmoc)-аминокислоты (≥  99%), 
O-(1H-6-хлорбензотриазол-1-ил)-1,1,3,3-тетраметил
уроний гексафторфосфат (HCTU) (≥  98%), 2,4,6-три-
метилпиридин (TMP) (≥  99%), 4-метил-пипери-
дин (Mpip) (≥  98%) от «Novabiochem» (Германия); 
трифторуксусная кислота (99%), ацетонитрил 
(≥  99,9%) и анизол (99%) от «Sigma-Aldrich» (Герма-
ния); 3,6-диоксо-1,8-октандитиол (95%) от «Sigma-
Aldrich» (США); триизопропилсилан (98%) от 
«Merck» (Германия); N,N-диметилформамид (DMF) 
(≥  99,9%), метил-трет-бутиловый эфир (≥  98%) и 
петролейный эфир 70-100 (≥  95%) от «ЭКОС-1» 
(Россия); Mpro коронавируса SARS-CoV-2 (рекомби-
нантный белок, лиофилизированный порошок, 
чистота по SDS-PAGE ≥  90%) от «Sigma-Aldrich» 
(США), кат.  #  SAE0172. Лиофилизированную Mpro 
разводили, в соответствии с рекомендацией про-
изводителя, в 100  мкл дистиллированной воды, 
содержащей 10% глицерина. Полученный раствор 
Mpro с концентрацией белка 59,2  мкМ разделяли 
на аликвоты и хранили при −20  °C.

Синтез модельного пептида. Пептид с ами-
нокислотной последовательностью CGGGAVLQSGY 
был получен методом твердофазного синтеза с 
использованием Fmoc-защищённых аминокис-
лот в DMF, HCTU/TMP и Mpip на системе Overture 
(«Protein Technologies», США), как было описано 
ранее [29]. Снятие защиты и отщепление пептида 
проводились путём инкубации с кислотным кок-
тейлем (91,5% трифторуксусной кислоты, 2,5% 
анизола, 2,5% воды, 2,5% 3,6-диоксо-1,8-октанди-
тиола, 1% триизопропилсилана) в течение 2  ч 
при комнатной температуре. Затем в раствор 
пептида добавляли восьмикратный объём сме-
си метил-трет-бутилового эфира и петролейного 
эфира (1  :  2 по объёму), полученную суспензию 
инкубировали в течение 30  мин при температу- 
ре −20  °C. Далее суспензию пептида центрифуги-

ровали при 4  °C и 4000  g в течение 10 мин, а затем 
удаляли супернатант и растворяли пептид в сме-
си вода-ацетонитрил (1  :  1 по объёму). Получен-
ный раствор пептида анализировали с помощью 
жидкостной хроматографии и масс-спектроме-
трии с электроспрейной ионизацией на хромато-
графе Agilent ChemStation 1200 Series с масс-спек-
трометром Agilent 1100 Series LC/MSD Trap XCT 
Ultra. Полученный пептид очищали с помощью 
высокоэффективной жидкостной хроматографии, 
используя хроматограф Agilent ChemStation 1200 
Series с масс-спектрометром Agilent 6100 Series 
Quadrupole LC/MS.

Электроды и электрохимическое оборудо-
вание. В данной работе были использованы ПГЭ 
с графитовым рабочим (геометрическая площадь 
0,0314  см2) и вспомогательным электродами, а 
также хлоридсеребряным (Ag/AgCl) электродом 
сравнения, полученные от «КолорЭлектроникс» 
(Москва, Россия).

Электрохимические измерения проводились 
с использованием потенциостата/гальваностата 
μStat 400 («Metrohm Autolab BV», Нидерланды) с 
программным обеспечением DropView 8400.

Все потенциалы в работе приведены относи-
тельно Ag/AgCl электрода сравнения.

Модификация ПГЭ наночастицами золота 
(AuНЧ) и иммобилизация модельного пептида. 
AuНЧ для модификации рабочих ПГЭ были полу-
чены методом электросинтеза по методике, опи-
санной ранее  [30]. Кратко: в горизонтальном ре-
жиме на поверхность ПГЭ наносили 60  мкл 5  мМ 
HAuCl4 в 0,1  М  HCl. Электросинтез проводился при 
потенциале рабочего электрода −0,5  В в течение 
180  с. После проведения электросинтеза раствор 
смывался с поверхности электрода дистиллиро-
ванной водой. Иммобилизация модельного пеп-
тида с аминокислотной последовательностью 
CGGGAVLQSGY на поверхности модифицирован-
ных AuНЧ рабочих электродов осуществлялась за 
счёт образования химических связей между мер-
каптогруппами N-концевых остатков цистеина 
молекул модельного пептида и AuНЧ. Для этого 
на поверхность модифицированных AuНЧ рабо-
чих электродов наносили 50 мкл водного раствора 
пептида с концентрацией 0,5–6  мМ. Электроды с 
нанесённым раствором пептида инкубировались 
в течение 2  ч при 4  °C. После инкубации элек-
троды отмывались от несвязанного модельного 
пептида дистиллированной водой.

Определение протеазной активности Mpro. 
Определение протеазной активности Mpro про-
водилось по регистрации уменьшения площади 
пика электроокисления остатка тирозина в мо-
дельном пептиде CGGGAVLQSGY, иммобилизован-
ном на поверхности ПГЭ, модифицированных 
AuНЧ (ПГЭ/AuНЧ), вследствие протеолитического 
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расщепления пептидной связи, образованной кар-
бонильной группой остатка глутамина и амино-
группой остатка серина. Для этого на поверх-
ность ПГЭ/AuНЧ с иммобилизованным пептидом 
наносили 25  мкл 0,1  М калий-фосфатного буфера 
(pH  7,4), содержащего 20% глицерина (по объё-
му) и различные концентрации Mpro (0–1500  нМ). 
ПГЭ/AuНЧ инкубировались при 37  °C в диапазоне 
300–1200  с. После инкубации раствор смывался 
с поверхности ПГЭ/AuНЧ дистиллированной во-
дой. Далее, на ПГЭ/AuНЧ с иммобилизованным 
пептидом наносили 60  мкл 0,1  М калий-фосфат-
ного буфера (pH  7,4), содержащего 50  мМ  NaCl, с 
последующей регистрацией методом цикличе-
ской вольтамперометрии площади пика окисле-
ния остатков тирозина в области 0,55  В. Цикли-
ческие вольтамперограммы регистрировались 
в диапазоне потенциалов от 0,35 до 0,7  В и ско-
рости сканирования 50  мВ/с. Площади пиков, 
соответствующих окислению остатка тирозина 
иммобилизованного пептида, рассчитывались 
после приведения вольтамперометрической кри-
вой к базовой линии с помощью программного 
обеспечения DropView 8400 к потенциостату/
гальваностату. Все электрохимические измере-
ния проводились при комнатной температуре  
(22  ±  3  °C).

Поверхностная концентрация электроактив-
ного модельного пептида рассчитывалась по 
уравнению  1  [31]:

Г0  = 
Q

nFA
,	 (1)

где Г0  – поверхностная концентрация электроак-
тивного модельного пептида на поверхности элек-
трода (моль/см2); Q  – заряд, рассчитанный путём 
интегрирования окислительного пика остатка ти-
розина модельного пептида (Кл); n  – количество 
электронов, участвующих в электрохимическом 
процессе (для остатка тирозина равно 2); F  – по-
стоянная Фарадея (96  485  Кл/моль); A  – площадь 
поверхности электрода (см2).

Расчёт Г0 проводился в начальный момент 
времени и после время-зависимой инкубации 
иммобилизованного модельного пептида на  
ПГЭ/AuНЧ с ферментом (Г0,  t).

Доля нерасщеплённого модельного пептида, 
иммобилизованного на поверхности ПГЭ/AuНЧ, 
выражалась как отношение Г0,  t к значению Г0, 
умноженное на 100%, в соответствии с уравне-
нием  2:

Нерасщеплённый пептид,  %  = 
Г0, t

Г0
  ×  100%,	 (2)

где Г0,  t  – поверхностная концентрация электроак-
тивного пептида на поверхности ПГЭ/AuНЧ после 
время-зависимой инкубации с Mpro (моль/см2).

Доля расщеплённого модельного пептида по-
сле инкубации с Mpro (θ) рассчитывалась по урав-
нению  3  [32]:

θ  =  1  − 
Г0, t

Г0
,	 (3)

где θ  – доля расщеплённого модельного пептида.
Зависимости θ от времени инкубации  (t) им-

мобилизованного на ПГЭ/AuНЧ модельного пеп-
тида с различными концентрациями Mpro были 
аппроксимированы экспоненциальной функцией 
в соответствии с уравнением  4  [33]:

θ  =  a[1  −  e−tkeff],	 (4)

где a  – предельное значение доли расщеплённого 
пептида при индивидуальной концентрации Mpro, 
представляющее собой горизонтальную асимпто-
ту, к которой стремится график зависимости θ от t 
при неполном расщеплении модельного пептида; 
e  – экспонента (2,718); t  – время инкубации (с); 
keff  – эффективная константа скорости (с−1).

Тангенсы начальных линейных участков 
зависимостей θ от t при каждой концентрации 
Mpro соответствовали значениям keff. Далее из 
зависимости keff от концентрации Mpro, аппрок-
симированной гиперболической функцией, были 
определены значения константы каталитической 
(kcat) и константы Михаэлиса (KM) в соответствии 
с уравнением  5  [32,  33]:

keff  = 
kcat

1 + (KM / [E])
,	 (5)

где kcat  – константа каталитическая  (с−1), KM  – кон-
станта Михаэлиса  (М), [E]  – концентрация фер-
мента  (М).

Математическая и статистическая обра-
ботка данных. Построение и анализ кривых вы-
полнены с помощью программы OriginPro (вер-
сия  8.1). Статистическая обработка данных была 
произведена с помощью программного обеспече-
ния Microsoft Office Excel 2019. Все измерения про-
водили не менее трёх раз. Представлены средние 
значения  ± стандартные отклонения.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

Дизайн электрохимической системы для 
определения активности Mpro. Для разработки 
электрохимической системы были выбраны ПГЭ, 
модифицированные AuНЧ (ПГЭ/AuНЧ). ПГЭ позво-
ляют проводить анализ ферментативной актив-
ности, не требующий трудоёмкой предподготовки 
и позволяющий использовать небольшие объёмы 
аналита  [34]. Возможность модификации ПГЭ на-
номатериалами позволяет создавать поверхность,  
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Схема 2. Фрагмент пептида, расщепляемого Mpro, где 
P1  – остаток глутамина; P1′  – остаток аминокислоты, 
имеющей небольшой радикал (серин, аланин или 
глицин); P2 – гидрофобный аминокислотный остаток 
(лейцин, фенилаланин или валин). Стрелкой пока-
зан сайт расщепления под действием Mpro

подходящую для иммобилизации биологических 
молекул, в том числе ферментов, миниатюризо-
вать аналитическую систему, а также повысить 
её чувствительность и селективность  [34]. AuНЧ 
обладают оптимальным набором физико-хими-
ческих свойств, таких как электропроводимость, 
биосовместимость, а также удобство синтеза и 
функционализации путём формирования стабиль-
ных и прочных связей с тиольными группами 
биологических молекул  [35–38]. В данной работе 
AuНЧ были получены методом электросинтеза на 
рабочем электроде при восстановлении AuCl4− до 
Au0  +  4Cl− из 60  мкл 5  мМ  HAuCl4 в 0,1  М  HCl при 
потенциале −0,5  В в течение 180  с. Размер полу-
ченных AuНЧ на поверхности ПГЭ составлял 100–
700 нм, что было показано нами ранее с помощью 
метода сканирующей электронной микроскопии 
(СЭМ)  [28].

Нами была смоделирована последователь-
ность пептида в качестве субстрата Mpro для по-
следующей иммобилизации на поверхности ПГЭ/
AuНЧ. В ряде работ была исследована субстрат-
ная специфичность Mpro и было показано, что фер-
мент расщепляет пептидную связь, образованную 
карбонильной группой глутамина, при этом ами-
ногруппа должна принадлежать остатку амино-
кислоты, имеющей небольшой радикал (серин, 
аланин или глицин), и, кроме того, до остатка 
глутамина должен располагаться гидрофобный 
аминокислотный остаток (лейцин, фенилаланин 
или валин)  [39–42] (схема  2). Остатки глутамина 
и аминокислот в положении  P1′ и P2 имеют наи-
более важное значение для протеазной активно-

сти  Mpro. Аминокислотные остатки, окружающие 
описанную консенсусную последовательность, 
менее консервативны и необходимы для распо-
знавания и стабильного связывания субстрата. 
Показано, что последовательность AVLQS наи-
более эффективно расщепляется Mpro в условиях 
in  vitro  [3, 43, 44].

Для иммобилизации пептида на поверхности 
ПГЭ/AuНЧ в аминокислотную последовательность 
смоделированного пептида был включён N-конце-
вой остаток цистеина, таким образом, меркапто-
группа цистеина формировала химическую связь 
с AuНЧ  [45,  46]. Последовательность аминокис-
лот, выступающая в качестве природного спей-
сера, придаёт пептиду большую подвижность и 
обеспечивает более высокую плотность пептида, 
иммобилизованного на поверхности электрода 
[18,  47,  48], в связи с этим в модельный пептид 
были включены три остатка глицина. В качестве 
природной редокс-метки был выбран остаток ти-
розина, обладающий способностью подвергаться 
необратимому электрохимическому окислению, 
что может быть зарегистрировано электрохими-
ческими методами [27,  49,  50]. Таким образом, был 
смоделирован и получен методом твердофазного 
синтеза пептид с аминокислотной последователь-
ностью CGGGAVLQSGY, способный расщепляться 
под действием Mpro с образованием октапептида 
CGGGAVLQ и трипептида SGY.

Дизайн модификации электродов AuНЧ и 
иммобилизации пептида представлен на рис.  1.

После инкубации ПГЭ/AuНЧ с различными 
концентрациями пептида (0–6  мМ) и отмывки 
неиммобилизовавшихся молекул был зарегистри-
рован пик в области 0,55  В методом циклической 
вольтамперометрии, соответствующий электро-
химическому окислению остатков тирозина моле-
кул модельного пептида (рис.  2).

Известно, что высокая плотность пептида 
на поверхности электрода может приводить к 
стерическим ограничениям протеазного расщеп-
ления пептида, а также снижать соотношение 

Рис. 1. Модификация ПГЭ AuНЧ, полученными электросинтезом, и иммобилизация модельного пептида 
CGGGAVLQSGY за счёт образования химической связи между меркаптогруппой цистеина и AuНЧ. Стрелкой 
показан сайт расщепления пептида под действием Mpro
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Рис.  2. Циклические вольтамперограммы ПГЭ/AuНЧ 
после инкубации с различными концентрациями 
модельного пептида CGGGAVLQSGY (0–6  мМ) в тече-
ние 2  ч при 4  °C. Измерения проводились в 60  мкл 
0,1 М калий-фосфатного буфера (pH 7,4), содержащего 
50 мМ NaCl. Скорость сканирования 50 мВ/с. Стрелка 
показывает направление сканирования

Рис.  3. Зависимость поверхностной концентрации 
(Г0) электроактивного пептида CGGGAVLQSGY от его 
концентрации в растворе, наносимом на ПГЭ/AuНЧ 
с последующей инкубацией в течение 2  ч при 4  °C. 
Представлены средние значения из не менее трёх 
повторов экспериментов  ± стандартные отклонения

Рис.  4. Циклические вольтамперограммы ПГЭ/
AuНЧ с иммобилизованным модельным пептидом 
CGGGAVLQSGY после инкубации с различными кон-
центрациями Mpro (0–1500  нМ) в течение 1200  с при 
37  °C. Измерения проводились в 60 мкл 0,1 М калий-
фосфатного буфера (pH 7,4), содержащего 50 мМ NaCl. 
Скорость сканирования 50  мВ/с. Стрелка показывает 
направление сканирования

сигнал/шум при электрохимических измерени-
ях  [51]. В  работе Anne et  al. при иммобилизации 
модельных пептидов на поверхности электродов 
Ultra-Flat TS-Gold Rotating Disc Electrodes для иссле-
дования активности трипсина и тромбина было 
показано, что при Г0  <  10  пмоль/см2 достигается 
плотность пептида на поверхности электрода, 
способствующая эффективному протеолизу за 
счёт снижения вероятности межмолекулярных 
взаимодействий пептидов  [32]. В связи с этим 
нами была проанализирована зависимость Г0 от 
концентрации пептида, наносимого на поверх-
ность ПГЭ/AuНЧ для иммобилизации (рис.  3).

На основании зависимости, представленной 
на рис.  3, мы предположили, что 1,5  мМ кон-
центрация пептида, наносимого на ПГЭ/AuНЧ, 
при которой достигается значение  Г0, равное 
5,4  ±  0,1  пмоль/см2, является оптимальной, по-
скольку при больших значениях  Г0 плотность 
пептида на поверхности электрода может пре-
пятствовать эффективному протеазному расщеп-
лению, а меньшей концентрации может быть 
недостаточно для регистрации кинетики фермен-
тативной реакции из-за более быстрого исчерпа-
ния пептида. Таким образом, для дальнейшего 
исследования протеолитической активности Mpro 
была выбрана концентрация пептида, наноси-
мого на ПГЭ/AuНЧ для его иммобилизации, рав-
ная  1,5  мМ.

Для оценки возможности электрохимической 
регистрации протеолитической активности Mpro 
мы провели инкубацию ПГЭ/AuНЧ с иммобили-
зованным пептидом в присутствии различных 
концентраций Mpro (0–1500  нМ) во временном 

диапазоне 300–1200  с при 37  °C. Как видно на 
рис.  4, при увеличении концентрации фермента 
после инкубации в течение 1200  с регистрируется 
уменьшение тока и площади пика электрохими-
ческого окисления остатка тирозина в области 
0,55  В, что свидетельствует о протеолитическом 
расщеплении пептида с высвобождением тиро-
зин-содержащего фрагмента (SGY).

В соответствии с уравнением 2 мы определи-
ли значение доли нерасщеплённого пептида (%) 
при его инкубации с различными концентрация-
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Рис. 5. Зависимости доли нерасщеплённого пепти-
да CGGGAVLQSGY  (%) от времени его инкубации  (t) с 
различными концентрациями Mpro (0–1500 нМ). Пред-
ставлены средние значения из не менее трёх повто-
ров экспериментов  ± стандартные отклонения

Рис. 6. Зависимость доли нерасщеплённого пептида 
(%) от логарифма концентраций Mpro. Представлены 
средние значения из не менее трёх повторов экспе-
риментов  ± стандартные отклонения

ми Mpro (0–1500  нМ) в диапазоне 300–1200  с при 
37  °C (рис.  5).

Из представленной зависимости доли нерас-
щеплённого пептида от  t видно, что при увели-
чении концентрации Mpro увеличивается доля 
расщеплённого пептида (θ). При этом после инку-
бации ПГЭ/AuНЧ с иммобилизованным пептидом 
с раствором без Mpro практически не наблюдает-
ся снижения площади пика электрохимического 
окисления остатка тирозина модельного пептида 
в заданном диапазоне времени. Выбранный диа-
пазон концентраций Mpro, при котором регистри-
руется время-зависимое расщепление пептида, 
был использован для дальнейшего определения 
кинетических параметров Mpro.

Таким образом, была показана возможность 
регистрации активности Mpro с помощью разрабо-
танной электрохимической системы.

Мы определили аналитические характери-
стики разработанной электрохимической систе-
мы. Зависимость доли нерасщеплённого пепти-
да (%) от логарифма концентраций Mpro имела 
линейный характер и описывалась уравнением  
вида: y  =  −(17,752  ±  1,827)x  +  (101,19  ±  4,69) со зна-
чением R2  =  0,9303 (рис.  6). Из данного уравнения 
был рассчитан предел обнаружения (LOD) для Mpro 
с учётом трёхкратного стандартного отклонения 
среднего значения площади пика окисления ти-
розина (3σ) как 44  нМ. Коэффициент вариации 
(CV) был рассчитан как 7% (n  =  3) для концентра-
ции Mpro, равной 1500  нМ. Для сравнения, в работе 
Sondag et  al. LOD для люминесцентного анализа с 
пептидным образцом, содержащим сайт специфи-
ческого расщепления Mpro, находился в диапазоне 
4–80  нМ  [52], а в работе Xu et  al. значение LOD 
составило 35  нМ для титрования с саморасщеп-

ляющимся флуоресцентным субстратом для обна-
ружения Mpro  [53].

Кинетический анализ протеазной активно-
сти Mpro. Для определения параметров стационар-
ной кинетики Mpro по отношению к модельному 
пептиду CGGGAVLQSGY с помощью разработан-
ной электрохимической системы применялась 
математическая модель для квазинасыщенных 
ферментных систем, в которых концентрация 
Mpro превышала значение концентрации иммо-
билизованного пептида  [54]. Зависимость  θ от  t 
в подобных гетерогенных ферментных системах 
является экспоненциальной и описывается урав-
нением  6  [32]:

θ  =  1  −  e−tkeff .	 (6)

Однако для соответствия экспериментально 
полученных данных этому уравнению значение  θ 
должно достигать 1, что соответствовало бы пол-
ному расщеплению иммобилизованного пептида. 
Поскольку в таких системах чаще всего не проис-
ходит полного расщепления иммобилизованного 
пептида, для аппроксимации зависимости  θ от  t 
было использовано уравнение  4, содержащее до-
полнительную переменную  a, соответствующую 
максимально возможному значению доли рас-
щеплённого пептида при заданной концентрации 
Mpro. Для иммобилизованного модельного пептида 
при различных концентрациях Mpro были получе-
ны зависимости θ от  t, представленные на рис. 7.

Значение  a после инкубации иммобилизо-
ванного на поверхности ПГЭ/AuНЧ модельного 
пептида в течение 1200  с при максимальной кон-
центрации Mpro, равной 1500  нМ, было рассчита-
но как 0,582, что согласуется с предположением  
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Рис. 7. Зависимости доли расщеплённого модель-
ного пептида CGGGAVLQSGY под действием Mpro  (θ) 
от времени инкубации  (t) с различными концентра-
циями фермента (50–1500  нМ). Представлены сред-
ние значения из не менее трёх повторов экспери-
ментов  ± стандартные отклонения

Рис.  8. Зависимость константы эффективной  (keff) 
от  концентрации Mpro, наносимой на поверх-
ность ПГЭ/AuНЧ с иммобилизованным пептидом 
CGGGAVLQSGY. Представлены средние значения из 
не менее трёх повторов экспериментов  ± стандарт-
ные отклонения

о неполном расщеплении пептида. Неполное 
расщепление иммобилизованного пептида под 
действием фермента может объясняться стери-
ческими ограничениями, возникающими из-за 
неравномерного покрытия пептидом структурно 
неоднородной поверхности рабочего электрода, а 
также наличия электрохимически инертных ком-
понентов в составе рабочего электрода, способ-
ных влиять на кинетику гетерогенных электро-
химических процессов  [55]. Кроме того, известно, 
что протеазной активностью обладает димерная 
форма Mpro, тогда как мономерная форма обладает 
более низкой каталитической активностью или 
неактивна  [56–58]. Таким образом, соотношение 
димерной и мономерной формы Mpro в растворе 
также может оказывать влияние на кинетику 
протеазного расщепления пептида в электрохи-
мической системе.

Из полученных зависимостей  θ от  t были 
рассчитаны значения keff. Зависимость keff от кон-
центрации Mpro имела гиперболический характер 
(R2  =  0,9948) и подчинялась уравнению  5, что ха-
рактерно для гетерогенных систем (рис.  8).

Из полученной зависимости, представленной 
на рис.  8, были рассчитаны kcat, KM и эффектив-
ность катализа, выраженная как kcat/KM, которые 
соответствовали значениям (3,1  ±  0,1) · 10−3  c−1, 
(358  ±  32) · 10−9  М и 8659  c−1/М соответственно. Мы 
сравнили кинетические параметры Mpro, полу-
ченные с помощью разработанной электрохими-
ческой системы, с аналогичными параметрами, 
полученными с помощью альтернативных систем 
для определения активности Mpro, основанных на 
использовании флуоресцентных методов и LC-MS. 
Так, в работе Sacco et  al. с помощью метода FRET 
были получены кинетические параметры Mpro, 

Mpro  с гистидиновой меткой и Mpro, содержащей 
дополнительные N-концевые остатки гистидина и 
метионина, по отношению к пептидному субстрату 
DABCYL-KTSAVLQSGFRKME(EDANS)  [59]. Значения 
kcat для этих ферментов находились в диапазоне 
от 0,01  с−1 до 0,21  с−1, значения KM  – от 27,8 · 10−6  М 
до 53,1 · 10−6  M, значения kcat/KM  – от 214  с−1/M до 
6689  с−1/M. В работе Rut et  al. аналогичные пара-
метры были получены для Mpro по отношению к 
различным пептидам с флуоресцентными метка-
ми, в том числе содержащим непротеиногенные 
аминокислоты (Ac-Abu-Tle-LQ-ACC, Ac-Thz-Tle-LQ-
ACC, Ac-VKLQ-ACC) [40]. Значения kcat находились в 
диапазоне от 0,050  с−1 до 0,178  с−1, значения KM – от 
189,5 · 10−6  М до 228,4 · 10−6  M, значения kcat/KM  – от 
219  с−1/M до 859  с−1/M. Поскольку в данной работе 
Mpro обладала низкой активностью по отношению 
к тетрапептидам, авторы синтезировали более 
длинные пептидные субстраты ACC-G-Abu-Tle-
LQSGFRK(DNP)K-NH2, ACC-G-Thz-Tle-LQSGFRK(DNP)-
K-NH2 и ACC-GVKLQSGFRK(DNP)K-NH2, содержащие 
пары гаситель-флуорофор. Для соответствующих 
субстратов были рассчитаны значения kcat/KM, на-
ходящиеся в диапазоне от 6755  с−1/M до 19  424  с−1/M. 
В работе Li et  al. для определения кинетических 
параметров Mpro и меченой Mpro были приме-
нены методы FRET и LC-MS. При этом значения 
kcat, KM и kcat/KM, полученные с использованием 
FRET по отношению к FRET-субстрату DABCYL-
KTSAVLQSFRKME(EDANS), были рассчитаны как 
0,23  ±  0,01  с−1, (34,2  ±  4,8) · 10−6  М и 6800  ±  976  с−1/М 
для немеченого фермента соответственно и 
0,9  ±  0,1 · 10−2  с−1, (139  ±  22,2) · 10−6  М и 67,5  ±  11,8  с−1/М 
для меченого фермента соответственно  [7]. Зна-
чения аналогичных параметров, полученных в 
данной работе для немеченой Mpro по отношению 
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Таблица  1. Параметры стационарной кинетики Mpro, полученные с помощью различных аналитических 
подходов

Фермент kcat, с−1 KM, M kcat/KM, с−1/M Субстрат Ссылка

Флуоресцентные методы

Mpro

0,16 (27,8  ±  5,2) · 10−6 5748 DABCYL-KTSAVLQSGFRKME(EDANS) [59]

0,178  ±  0,016 (207,3  ±  12) · 10−6 859  ±  57 Ac-Abu-Tle-LQ-ACC

[40]

0,144  ±  0,006 (189,5  ±  2,7) · 10−6 760  ±  50 Ac-Thz-Tle-LQ-ACC

0,050  ±  0,002 (228,4  ±  9,9) · 10−6 219  ±  3 Ac-VKLQ-ACC

не приведены не приведены 14  748  ±  684 ACC-G-Abu-Tle-LQSGFRK(DNP)K-NH2

не приведены не приведены 19  424  ±  1176 ACC-G-Thz-Tle-LQSGFRK(DNP)K-NH2

не приведены не приведены 6755  ±  208 ACC-GVKLQSGFRK(DNP)K-NH2

0,23  ±  0,01 (34,2  ±  4,8) · 10−6 6800  ±  976 DABCYL-KTSAVLQSFRKME(EDANS) [7]

Меченая 
Mpro

(0,9  ±  0,1) · 10−2 (139  ±  22,2) · 10−6 67,5  ±  11,8 DABCYL-KTSAVLQSFRKME(EDANS) [7]

0,21 (30,9  ±  3,8) · 10−6 6689 DABCYL-KTSAVLQSGFRKME(EDANS)
[59]

0,01 (53,1  ±  8,1) · 10−6 214 DABCYL-KTSAVLQSGFRKME(EDANS)

0,040 11  ·  10−6 3640 DABCYL-KTSAVLQSGFRKME(EDANS) [60]

LC-MS

Mpro 2,2  ±  0,07 (903,5  ±  86,9) · 10−6 2444  ±  248 TSAVLQSGFR [7]

Электрохимические системы

Mpro (3,1  ±  0,1) · 10−3 (358  ±  32) · 10−9 8659 CGGGAVLQSGY данная 
работа

Примечание. Abu  – аминомасляная кислота; ACC  – 7-амино-4-карбамоилметилкумарин; DNP  – 2,4-динитро-
фенил; Thz  – тиазолидин-4-карбоновая кислота; Tle  – 2-амино-3,3-диметилмасляная кислота.

к пептиду TSAVLQSGFR с применением метода 
LC-MS, были рассчитаны как 2,2  ±  0,07  с−1, (903,5  ± 
±  86,9) · 10−6  М и 2444  ±  248  с−1/М соответственно. 
В работе Abian et al. значения kcat, KM и kcat/KM Mpro 
с гистидиновой меткой по отношению к FRET-
субстрату DABCYL-KTSAVLQSGFRKME(EDANS) были 
рассчитаны как 0,040  с−1, 11 · 10−6  М и 3640  с−1/M 
соответственно  [60]. В табл.  1 суммированы па-
раметры стационарной кинетики, полученные с 
помощью альтернативных аналитических мето-
дов и электрохимической системы, разработан-
ной нами.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Коронавирусные протеазы, в частности, глав-
ная протеаза коронавирусов Mpro, являются потен-
циальной мишенью для терапии вирусных забо-

леваний, что обусловливает важность изучения 
свойств и поиска новых высокоэффективных ин-
гибиторов этих ферментов. Существующие на се-
годняшний день методы определения активности 
Mpro имеют ряд недостатков, среди которых необ-
ходимость использования меченых пептидных 
субстратов и высокая трудоёмкость аналитиче-
ского процесса. В связи с этим разработка новых 
аналитических подходов к определению актив-
ности Mpro является актуальной задачей. Нами 
была разработана электрохимическая система 
для определения активности Mpro, основанная на 
регистрации методом циклической вольтамперо-
метрии площади пика электрохимического окис-
ления остатка тирозина модельного пептида, 
иммобилизованного на поверхности ПГЭ/AuНЧ и 
использующегося в качестве субстрата. Смодели-
рованный пептид содержал N-концевой остаток 
цистеина для его ковалентной иммобилизации 
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на поверхности ПГЭ/AuНЧ, три остатка глицина 
в качестве спейсера, последовательность AVLQS 
(наиболее эффективно расщепляемую под дей-
ствием Mpro по пептидной связи, образованной 
карбонильной группой остатка глутамина и ами-
ногруппой остатка серина) и C-концевой дипеп-
тид, состоящий из остатков глицина и тирозина. 
Уменьшение площади пика электрохимического 
окисления остатка тирозина служило аналити-
ческим сигналом каталитической активности 
Mpro. LOD в разработанной системе был сопоста-
вим с аналогичным параметром других систем 
для определения активности Mpro. С помощью 
разработанного подхода нами были определены 
параметры стационарной кинетики Mpro по от-
ношению к модельному пептиду CGGGAVLQSGY. 
Полученные нами значения kcat и KM для Mpro по 
отношению к модельному пептиду CGGGAVLQSGY 
отличались от аналогичных параметров, полу-
ченных с помощью других аналитических под-
ходов. По-видимому, это связано с различной 
аминокислотной последовательностью пептид-
ных субстратов, которые использовались в на-
стоящей и вышеуказанных работах. Кроме того, в 
электрохимической системе пептидный субстрат 
находится в иммобилизованном на поверхности 
электрода состоянии. Однако значение kcat/KM для 
Mpro, которое было определено с помощью раз-
работанной нами электрохимической системы, 
находится в диапазоне значений данного пара-
метра, полученного с помощью вышеуказанных  

альтернативных систем для определения актив-
ности Mpro (67,5–19  424  с−1/М). Достоинством раз-
работанного подхода является отсутствие необхо-
димости включения дополнительной химической 
метки в пептидный субстрат. Мы полагаем, что 
разработанная электрохимическая система может 
быть использована для поиска новых ингибито-
ров  Mpro, перспективных для лечения коронави-
русных инфекций.
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DETERMINATION OF SARS-CoV-2 MAIN PROTEASE (Mpro) 
ACTIVITY BASED ON ELECTROOXIDATION  

OF THE TYROSINE RESIDUE OF A MODEL PEPTIDE
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The proposed approach for determining the catalytic activity of SARS-CoV-2 main protease (Mpro) is 
based on the registration of the peak area of the electrochemical oxidation of the tyrosine residue of 
the model peptide substrate CGGGAVLQSGY immobilized on the surface of a graphite screen-printed 
electrode (SPE) modified with gold nanoparticles (AuNP). The AuNP were obtained by electrosyn-
thesis. The steady state kinetic parameters of Mpro towards the model peptide were determined: 
catalytic constant (kcat) was (3.1  ±  0.1) · 10–3  s–1; Michaelis constant (KM) was (358  ±  32) · 10–9  M; cata-
lytic efficiency (kcat/KM) was 8659  s–1/M. The limit of detection (LOD) determined for Mpro using the 
proposed electrochemical system was 44  nM. The proposed approach is a promising tool to search  
for new Mpro inhibitors as drugs for the treatment of coronavirus infections.

Keywords: Mpro protease, tyrosine electrooxidation, screen-printed electrodes, gold nanoparticles, model 
peptide
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