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Несмотря на значительные достижения фундаментальной онкологии, практические резуль-
таты остаются неудовлетворительными. Это несоответствие отчасти объясняется исключитель-
ной сосредоточенностью исследователей на процессах внутри раковой клетки, что приводит 
к недооценке рака как системного заболевания. Очевидно, что необходим разумный баланс 
между двумя альтернативными методологическими подходами: редукционизмом, который 
предполагает разделение сложного явления на элементы, подлежащие детальному изучению, 
и холизмом, подчеркивающим необходимость изучения сложной системы как единого цело-
го. Последовательный холистический подход приводит к представлению о раке как особом 
органе, что стимулирует обсуждение его функции и эволюционной роли. В  статье рассматри-
ваются следующие вопросы: рак как механизм очищающей селекции генофонда, соотношение 
между наследственным и спорадическим раком, раковый интерактом, роль метастазирования 
в летальном исходе. Предполагается, что нейтрализация ракового интерактома может стать 
альтернативной стратегией лечения злокачественных опухолей.

КЛЮЧЕВЫЕ СЛОВА: война против рака, происхождение рака, лечение рака, отличительные при-
знаки рака, феноптоз, злокачественность рака, стратегия нейтрализации.
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ВВЕДЕНИЕ

Недавняя публикация «Why do cancer patients 
die?»  [1] открывает новую рубрику «Roadmap 
Articles», в которой редакция «Nature Reviews 
Cancer» планирует помещать статьи, открываю-
щие новые подходы в исследовании и лечении 
рака  [2]. Авторы работы констатируют, что непо-
средственные причины смерти онкологического 
больного остаются малоизученными, и это пре-
пятствует разработке новых методов лечения. 
Предполагается, что соответствующие экспери-
менты будут способствовать прогрессу фундамен-
тальной онкологии и улучшению клинической 
практики.

Тот же вопрос («Отчего погибает онкологиче-
ский больной?») был задан 10  годами ранее как 
приглашение к обсуждению проблем взаимоот-

ношений опухоли и организма не только с утили-
тарно-медицинской, но и с биологической точки 
зрения  [3]. Действительно, понимание механизма 
гибели может открыть много возможностей для 
лечения рака путем блокирования различных 
стадий этого процесса, тогда как незнание этого 
механизма обрекает врача на единственно воз-
можную стратегию лечения  – физическое уни-
чтожение раковой клетки. Именно этот подход 
реализуется сегодня, каким бы сложным, труд-
ным и болезненным он ни был. Концентрация 
внимания онкологического «мейнстрима» на 
внутриклеточных процессах  [4], обусловленная 
надеждой найти глубоко спрятанные уязвимости 
раковой клетки, постоянно множит число ее отли-
чительных признаков («hallmarks»)  [5–8], но при 
этом отсутствуют попытки связать их с клини-
ческими проявлениями заболевания, такими как 
слабость и потеря веса, хроническое воспаление, 
анорексия, кахексия, анемия, коагулопатия, нетоз, 
множественная органная недостаточность  [9–18]. 
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Сегодня, как и 20  лет назад, «исследования рака 
имеют тенденцию фокусироваться на отдельных 
клеточных механизмах, практически игнорируя 
все, что происходит в организме в целом»  [19]. 
В  результате, несмотря на многие замечательные 
достижения фундаментальной онкологии, укреп-
ляется мнение, что исследования рака находятся 
на пороге смены парадигм  [20]: практические 
достижения остаются ограниченными, стоимость 
индивидуализированной терапии неприемлемо 
высока, главная надежда по-прежнему на искус-
ство хирурга.

Несоответствие между достижениями фунда-
ментальной и практической онкологии представ-
ляется, по крайней мере частично, следствием 
торжества редукционистского подхода в ущерб 
холизму [21]. (Этот конфликт, как в древнеиндий-
ской притче о слепых мудрецах, ощупывающих 
слона, заключается в том, что глубокое погруже-
ние в детали может увести исследователя от по-
нимания объекта в целом.) Холистический подход 
использует эволюционную перспективу при изуче-
нии взаимоотношений опухоли и организма  [22]. 
Согласно общепринятой точке зрения, рак – след-
ствие несовершенства эволюции и результат 
случайных мутаций, приводящих к нарушению 
межклеточной кооперации; раковые клетки  – 
«обманщики» (cheaters), вернувшиеся к своему 
исходному одноклеточному образу жизни [23,  24]. 
По  механизму дарвиновской эволюции они эгои-
стично реплицируются, конкурируют за выжива-
ние, распространяются по организму и достигают 
репродуктивного успеха за его счет  [25–27].

В противовес общепринятому мнению, две 
статьи открыли онкологическому сообществу 
«слона»  – рак как особый орган  [28,  29]. Действи-
тельно, опухоль отвечает формальному опреде-
лению органа как «анатомически дискретной 
совокупности тканей, предназначенной для вы-
полнения специфических функций»  [28], и обла-
дает соответствующими атрибутами  – сложной 
иерархической структурой, зачастую имитирую-
щей структуру нормальной ткани  [30], наличием 
стволовых и дифференцированных клеток, опре-
деленными стадиями развития и интеграцией с 
системами организма. Рак эволюционно консер-
вативен: возникнув, по-видимому, одновременно 
с многоклеточными организмами около милли-
арда лет назад, он поражает большинство видов 
животных  [24,  27,  31].

Концепция «рак как орган» означает ради-
кальный отход от общепринятых представлений. 
Но  хотя этот термин и вошел в научный оби-
ход (показательно признание того, что сложность 
раковой опухоли может превышать сложность 
нормальных тканей  [6]), произошедшая смена 
парадигм осталась практически незамеченной. 

Причина, видимо, в том, что за первым решаю-
щим шагом (признанием принципиально иной, 
чем считалось ранее, природы этого феномена) 
не последовал второй, необходимый и очевид-
ный  – обсуждение функции, породившей этот 
орган (невозможно изучать орган в отрыве от 
его функции и вне эволюционной перспективы). 
В  данной работе сделана попытка восполнить 
этот пробел: наследственный рак рассматри-
вается как механизм очистительной селекции 
генофонда, спорадический рак  – как побочный 
продукт наследственного рака, а вредоносность 
раковой клетки  – как ее главное отличительное 
свойство. Предполагается, что нейтрализация ра-
кового интерактома может стать альтернативной 
стратегией лечения.

ЭВОЛЮЦИОННОЕ ПРОИСХОЖДЕНИЕ РАКА

Ранние предположения, что рак выполняет 
функцию очищающего отбора  [22,  32–35], не по-
лучили развития, поскольку большинство особей, 
которых убивает рак, находятся в пострепродук-
тивном возрасте [36]. Однако концепция «рак как 
орган» возрождает дискуссию, поскольку каждый 
орган имеет эволюционную основу своего суще-
ствования.

Есть два типа рака (наследственный и спо-
радический), и только первый способен осущест-
влять отрицательный отбор. Наследственный рак 
является следствием герминальной мутации в од-
ном из нескольких десятков критически важных 
генов  [34,  37], участвующих в репарации ДНК, 
регуляции клеточного цикла и апоптозе  [38]. 
Герминальная драйверная мутация, присутствую-
щая в каждой клетке организма (в том числе в 
его зародышевых клетках), создает высокий риск 
развития рака у ее носителя по двум причинам: 
во-первых, сокращается путь клеточной транс-
формации, и, во-вторых, будущая раковая клетка 
изначально находится в генетически неблагопо-
лучном микроокружении (ситуация «криминаль-
ного “семени” в криминогенной “почве”»  [39]). 
Таким образом, герминальная драйверная мута-
ция создает двойную опасность: для организма 
(большой риск высокопенетрантного рака в ран-
нем возрасте) и для вида (высокая вероятность 
передачи потомству). Однако реализация первой 
возможности предотвращает вторую (по выраже-
нию Стива Соммера, «рак убивает индивида и 
спасает вид»  [33]). Наследственные раковые син-
дромы с менделевским доминантным наследова-
нием резко снижают репродуктивный успех по-
томства  [40] и очищают генофонд от мутантных 
аллелей (частота предрасполагающих аллелей в 
популяции  <  1%)  [41,  42].
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Наследственный рак встречается относитель-
но редко [43–51], составляя лишь ~1% онкологиче-
ской заболеваемости. Возникает вопрос, как объ-
яснить огромное количественное преобладание 
спорадического рака, который вызывается сома-
тическими (не наследуемыми) мутациями, раз-
вивается на протяжении десятилетий и поражает 
в основном людей пострепродуктивного возраста. 
Действительно, зачем убивать стариков, не уча-
ствующих в эволюции? Возможно, ответ кроется 
в самом вопросе: рак убивает стариков именно 
потому, что они не участвуют в эволюции. В духе 
концепции антагонистической плейотропии  [40, 
52,  53] можно допустить, что рак присутствует в 
старости «по инерции», т.е. не по необходимости, 
а из-за невозможности от него избавиться (ста-
рость, не производящая потомства, не способна 
эволюционировать). Таким образом, спорадиче-
ский рак, вероятно, является побочным продук-
том наследственного рака, а его огромное количе-
ственное преобладание у Homo sapiens  – плата за 
искусственно созданную комфортную жизнь (со 
всеми ее излишествами и вредными привычка-
ми), за постоянно растущую (~2,5  года в десятиле-
тие) продолжительность жизни, обусловленную 
изменениями в гигиене, здравоохранении и пи-
тании  [40], а также за обусловленное старением 
снижение трансформационной резистентности 
стволовых клеток  [54]. В  странах со средней про-
должительностью жизни 75–80 лет риск заболеть 
раком составляет сегодня  ~50%, а при продолжи-
тельности жизни 120  лет он составит, по про-
гнозам, почти 90%  у  мужчин и более 70%  у жен-
щин [55]. Высокая заболеваемость раком является, 
вероятно, особенностью H.  sapiens  – этого далеко 
не типичного представителя животного мира. 
У  большинства других видов млекопитающих 
уровень заболеваемости гораздо ниже  [27,  56].

Чтобы проиллюстрировать разницу между 
наследственной и спорадической формами, рас-
смотрим аналогию рака с механизмом самоуни-
чтожения, встроенным в ракету; скрытый в нор-
мальных условиях, он обнаруживает себя лишь 
при аварии. Этот механизм может работать штат-
но, предотвращая катастрофические последствия 
в редких случаях отказа ракеты (наследственный 
рак), но может дать сбой в результате старения 
и порчи деталей в процессе хранения. Чем про-
должительнее хранение, тем чаще сбои (спора-
дический рак). Если в первом случае процесс 
инициируется одним из небольшого числа опре-
деленных отклонений от стандартной процедуры 
(и, соответственно, реализуется по нескольким 
четко определенным сценариям), то во втором 
случае его инициирует сочетание многих случай-
ных дефектов, накапливающихся в течение дли-
тельного времени (и, соответственно, реализация 

возможна во множестве вариантов). Эта аналогия 
может объяснить различия мутационных ланд-
шафтов наследственных и спорадических форм 
рака [57–59], а также их клинические, морфологи-
ческие и молекулярные различия.

Широкое использование секвенирования но- 
вого поколения  (NGS) для наследственного те-
стирования позволило экспериментально иссле-
довать корреляции генотипа и фенотипа у он- 
кологических больных [60]. Хотя феномен очища-
ющего отбора при наследственном раке кажется 
несомненным, недавние исследования поставили 
под вопрос его эффективность. Оказалось, что гер-
минальные патогенные варианты (germline path
ogenic variants,  GPV), предрасполагающие к вы-
сокопенетрантному раку, встречаются чаще, чем 
предполагалось  [51,  61,  62]. Более четверти рако-
вых опухолей у носителей таких GPV не имели 
специфических признаков, связанных с герми-
нальным аллелем  [58]. Это позволило предпо-
ложить, что опухоли развивались независимо от 
него и, следовательно, GPV менее пенетрантны, 
чем считалось ранее  [63].

В связи с этими данными можно высказать 
несколько соображений. Во-первых, определение 
статуса наследственных мутаций осложняется не-
ожиданно широким распространением таких яв-
лений, как постзиготный мозаицизм, аберрантная 
клональная экспансия и клональное кроветворе-
ние [47, 64–76], что иногда приводит к неправиль-
ной классификации. Во-вторых, при изучении 
рака как биологического феномена H.  sapiens вряд 
ли можно рассматривать в качестве репрезента-
тивной экспериментальной модели. В  животном 
мире рак оказывает значительное влияние на 
конкурентные способности особей, их восприим-
чивость к патогенам, уязвимость для хищников, 
способность к расселению  [31]. Условия среды 
обитания, в свою очередь, влияют на патогенез 
заболевания. Тысячи лет цивилизации привели к 
таким радикальным изменениям в образе жизни 
человека (гигиена, здравоохранение, питание) и 
окружающей его среде, что они могли значитель-
но снизить селективное давление наследственного 
рака. В-третьих, в недавнем исследовании эволю-
ционного воздействия детского рака на генофонд 
человека было установлено, что гены синдрома 
предрасположенности к детскому раку (pediatric 
cancer predisposition syndrome genes) находятся 
под сильным селективным давлением. Авторы 
резюмируют, что наследственный детский рак 
осуществляет естественный отбор, существенно 
влияющий на современный генофонд  [77].

Гипотеза о том, что «рак убивает индивида 
и спасает вид»  [33], приводит к контринтуи-
тивному взгляду на рак как альтруистический 
феномен. Основой биологической эволюции,  
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согласно Дарвину, является индивидуальный 
отбор (т.е.  эгоизм  – ее движущая сила). Однако, 
«возможно, самым замечательным свойством эво-
люции является ее способность порождать сотруд-
ничество в конкурентном мире»  [78]. Противоре- 
чие между положениями теории Дарвина и оби-
лием примеров кооперации и альтруизма в дикой 
природе было разрешено столетие спустя в тео-
риях инклюзивной приспособленности, родствен-
ного отбора  [79,  80] и «эгоистичного гена»  [81]. 
Хотя теоретические споры продолжаются до сих 
пор (см.  работы Nowak  et  al.  [82], Abbot et  al.  [83], 
Kay  et  al.  [84] и Efferson  et  al.  [85]), существование 
кооперации и альтруизма в биологических сооб-
ществах сомнений не вызывает.

Альтруизм наиболее активно обсуждается в 
связи с феноменом старения, начиная с ранних 
идей Вейсмана о программируемом старении 
и заканчивая концепцией программируемого и 
альтруистического старения, выдвинутой в рабо-
те Скулачева с соавторами  [86]. В  рамках послед-
ней развивается идея феноптоза (программируе-
мой гибели организма). По  аналогии с клетками 
многоклеточных организмов, обладающих меха-
низмом самоуничтожения (апоптоз)  [87], предпо-
лагается, что «сложные биологические системы 
снабжены программами, устраняющими те эле-
менты системы, которые стали опасными или 
ненужными для системы в целом»  [88]. Можно 
предположить, что рак  – частный случай фено-
птоза. На  уровне многоклеточного организма 
распространению опасных дефектов противодей-
ствует апоптоз, а на уровне популяции эту работу 
выполняет рак. Кажется вероятным, что апоптоз 
и рак  – первая и вторая линии защиты биологи-
ческой иерархии от вредоносных генетических 
повреждений.

ДРАЙВЕРНЫЕ МУТАЦИИ  
ЗАПУСКАЮТ ПРЕДСУЩЕСТВУЮЩУЮ  

ЭПИГЕНЕТИЧЕСКУЮ ПРОГРАММУ

Широко распространено мнение, что рак 
возникает в результате накопления в клетке 
драйверных мутаций и что рак так же необра-
тим, как и сами мутации. Хотя в подавляющем 
большинстве случаев мутации действительно 
предшествуют раку, они не являются абсолютно 
обязательными для канцерогенеза. Известны опу-
холи с небольшим числом мутаций или вовсе 
без них  [89], а реверсия рака может происходить, 
несмотря на их присутствие [90, 91]. Эпигенетиче-
ское перепрограммирование само по себе может 
стимулировать опухолевый рост  [92], в частности 
ингибирование синтеза Polycomb group proteins 
вызывает необратимый рост опухоли у плодовых 

мушек  [93]. Эти факты согласуются с представле-
нием о раке как изменении нормальной клеточ-
ной дифференцировки  [94]. В  свете концепции 
эпигенетических ландшафтов Уоддингтона драй-
верные мутации индуцируют эпигенетическое 
перепрограммирование, приводящее к крити-
ческому переходу от фиксированного состояния 
нормальной клетки к фиксированному состоянию 
раковой клетки  [91]. В  пользу этой точки зрения 
свидетельствует генетический анализ нескольких 
видов рака (молочной железы, толстой кишки, 
поджелудочной железы, глиобластомы), который 
показал, что драйверные мутации, значительно 
различающиеся у этих видов, повреждают тем не 
менее одни и те же сигнальные пути  [95].

Эти данные заставляют пересмотреть роль 
драйверных мутаций в канцерогенезе. Они, воз-
можно, не движущая сила стохастического про-
цесса канцерогенеза, а, скорее, триггеры пред-
существующей эволюционно консервативной 
эпигенетической программы. Очевидное сходство 
между эмбриогенезом и туморогенезом предпо-
лагает онкофетальное перепрограммирование, 
позволяющее раковым клеткам ускользать от 
иммунного ответа и способствующее их раз-
множению и метастазированию  [96]. Концепция 
драйверных мутаций как триггера эпигенетиче-
ской трансдифференцировки может примирить 
конфликтующие теории: SMT  (Somatic Mutation 
Theory)  [97], которая рассматривает рак как кле-
точную патологию, и  TOFT  (Tissue Organization 
Field Theory)  [98,  99], которая считает рак ткане-
вой патологией, обусловленной дефектами раз-
вития.

РАК КАК ПРОГРАММИРУЕМАЯ  
ГИБЕЛЬ ОРГАНИЗМА

Рак как орган должен иметь функцию, и она 
очевидна  – это киллерная функция, реализую-
щаяся поэтапно и имеющая черты программируе-
мой гибели организма  [35,  100]. Термин «раковая 
трансформация» обозначает более глубокое изме-
нение, чем просто обретение клеткой ряда фено-
типических признаков, таких как нерегулируемое 
деление, а именно радикальное изменение ее 
социального поведения: «клетка-созидатель» ста-
новится «клеткой-разрушителем». Если нормаль-
ная клетка поддерживает гомеостаз организма, 
то раковая клетка, подобно «зомби», подчиняет 
метаболизм хозяина своим потребностям  [101], 
строит «нишу»  [102,  103], обеспечивает себя кро-
воснабжением  [104], энергией  [105] и иннерва-
цией  [8,  106,  107], формирует микроокружение и 
преметастатические ниши  [108–112], колонизиру-
ет организм  [113] и, наконец, убивает его и  себя.
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Смерть онкологического больного воспри-
нимается как нечто настолько очевидное, само 
собой разумеющееся и присущее раку, что его 
киллерная функция не артикулируется явно, ей 
не уделяется должное внимание, и она не при-
сутствует в списке его отличительных свойств. 
Традиционное мнение о том, что смертность от 
рака есть следствие метастазирования, отождест
вляет метастазирование с вредоносностью, 
т.е. способностью раковой клетки убить организм 
(термин «вредоносность» используется здесь для 
отличия от «злокачественности», обозначающей 
онкологическую патологию в целом). Очевидно, 
однако, что метастазирование (распространение 
по организму) и вредоносность  – свойства рако-
вой клетки, хотя и тесно связанные, но, по сути, 
разные. В  этом отношении показателен тот факт, 
что ген  NALCN регулирует как метастазирова-
ние раковых клеток, так и диссеминацию нор-
мальных клеток без метастазов  [114]. Есть много 
свидетельств того, что причиной большинства 
случаев смерти от рака являются системные  
воздействия, а не метастазы  per  se  [1,  29,  115].

Вредоносность является, по-видимому, тем 
свойством раковой клетки, которое «еще ждет 
своего признания»  [116]: именно она формирует 
функциональную связь опухоли и организма, 
тогда как все остальные свойства играют, по-ви-
димому, лишь вспомогательную роль. Вредонос-
ность реализуется посредством разнообразного 
инструментария, включающего секретируемые 
факторы, внеклеточные везикулы, циркулирую-
щие нуклеиновые кислоты и нейрогенные фак-
торы  [8,  101,  117–133]. Этот арсенал, который 
можно обозначить как раковый интерактом, 
способен влиять на отдаленные ткани, вызывая 
различные паранеопластические синдромы [9–13, 
101, 134–136]. Интерактомы нормальных и рако-
вых клеток, обладающих одним геномом, должны 
быть в принципе одинаковы. Различия, видимо, 
лишь в «целеполагании»: те средства, которые 
нормальная клетка использует для поддержания 
гомеостаза организма, раковая клетка направляет 
на его разрушение, используя неадекватно време-
ни и/или месту, в неприемлемых концентрациях  
и/или сочетаниях. Одним из таких средств «двой-
ного назначения» является ассоциированный 
с клеточным старением секреторный фенотип 
(senescence-associated secretory phenotype,  SASP), 
который служит механизмом противоопухоле-
вой защиты при нормальном старении, но про-
туморогенным фактором у клеток, индуцирован- 
ных генотоксическим стрессом [121,  137,  138]. Воз-
можно, наиболее значимым проявлением вредо-
носности раковой клетки является хроническое 
воспаление, которое часто предшествует и всегда 
сопровождает злокачественный рост  [96, 139–145]. 

Являясь фундаментальным защитным механиз-
мом, призванным бороться с инфекциями и спо-
собствовать заживлению ран, «оно антагонистич-
но гомеостатическим механизмам организма, что 
объясняет неизбежное нарушение многих функ-
ций»  [146]. Недавно было показано, что слияние 
внеклеточных везикул с клетками-мишенями 
является триггером системного воспаления  [147]. 
Одним из следствий воспаления является также 
нетоз (neutrophil extracellular traps, NET)  – защит-
ный механизм, предназначенный для захвата 
и нейтрализации микробов, но способный при 
патологической хронической активации вызы-
вать полиорганную недостаточность [17, 148–152]. 
Кахексия также связана с воспалительным про-
цессом  [153–155]. Недавно было выявлено вовле-
чение в онкологический процесс периферической 
и центральной нервной системы  [8,  156–158].

НЕЙТРАЛИЗАЦИЯ РАКОВОГО ИНТЕРАКТОМА 
КАК СТРАТЕГИЯ ЛЕЧЕНИЯ

Если рассматривать рак как особый орган, его 
развитие – как серию предопределенных событий, 
а летальный исход – как результат присущей ему 
специфической функции, то понимание механиз-
ма последней есть необходимое условие успеш-
ной борьбы с этим злом. Общепринятое утвержде-
ние «рак  – не одна, а много разных болезней», 
констатирующее многообразие его проявлений, 
отражает клиническую точку зрения. Однако экс-
периментатор видит в этом многообразии единый, 
хотя и многовариантный, патогенетический меха-
низм.

Прогресс в войне против рака неудовлетво-
рителен по двум основным причинам. Во-первых, 
раковые клетки быстро учатся избегать средств 
поражения и после первых, часто очень значи-
тельных потерь, восстанавливают свои прежние 
позиции и переходят в наступление  [159]. Во-вто-
рых, глубинное родство раковых и нормальных 
клеток превращает химиотерапию в форму «дру-
жественного огня» с сопутствующими, порой 
тяжелыми, потерями. Эта ситуация заставляет 
рассматривать альтернативы существующей се-
годня стратегии лечения, направленной на уни-
чтожение раковых клеток, такие как адаптив-
ная терапия  [160,  161], стратегия «толерантной 
защиты»  [162,  163], стратегия реверсии рака  [91], 
стратегия нейтрализации, основанная на «анти-
дотах» вместо «ядов»  [164]. В  последнем случае 
предполагается переориентировать средства 
борьбы с органа на его функцию, т.е.  на раковый 
интерактом. Именно такую стратегию «нейтра-
лизации» применяет человек в борьбе со своими 
внешними врагами (ядовитыми животными): 
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вместо безнадежных и губительных попыток  
полного уничтожения самих животных исполь-
зуются эффективные и относительно безвредные 
специфические антидоты. Такая стратегия лечения 
может иметь ряд преимуществ перед существую-
щей сегодня: (1)  быть менее токсичной; (2)  иметь 
меньшую стоимость (при условии, что различные 
виды рака имеют сходный вредоносный интер-
актом); (3)  быть пригодной для химиопрофилак-
тики, применяющей лекарства для блокирования 
ранних стадий канцерогенеза  [165]. Известные се-
годня примеры нейтрализующей стратегии – при-
менение нестероидных противовоспалительных 
препаратов  (НПВП) для облегчения симптомов и 
улучшения самочувствия раковых больных  [166] 
и инъекции ДНКазы  I подопытным животным 
для ингибирования ассоциированного с нетозом 
метастазирования  [148].

Для получения эффективного противоядия 
необходимо знание механизма вредоносного эф-
фекта. Применительно к раку это означает тща-
тельное изучение опосредуемого интерактомом 
воздействия опухоли на отдаленные ткани. Необ-
ходимо выяснить степень вариабельности и спе-
цифичности как самого ракового интерактома, 

так и его тканевых и метаболических мишеней. 
В  этом контексте показательны исследования 
процесса старения, объектом которых является 
целостный организм. При этом для изучения мо-
лекулярных процессов в различных тканях на ге-
номном, эпигеномном, транскриптомном, протеом
ном и метаболомном уровнях был использован 
весь спектр высокопроизводительных «омик»-тех-
нологий  [167–169]. Можно предположить, что, как 
и в случае со старением, где полученные знания 
привели к значительным практическим результа-
там  [170], целостный подход к пораженному зло-
качественной опухолью организму позволит найти 
способы избежать ее губительного воздействия.
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RETHINKING THE EVOLUTIONARY ORIGIN,  
FUNCTION, AND TREATMENT OF CANCER

Review
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115478 Moscow, Russia; e-mail: alicht@mail.ru

Despite remarkable progress in basic oncology, practical results remain unsatisfactory. This discrepan-
cy is partly due to the exclusive focus on processes within the cancer cell, which results in a lack of 
recognition of cancer as a systemic disease. It is evident that a wise balance is needed between two 
alternative methodological approaches: reductionism, which would break down complex phenomena 
into smaller units to be studied separately, and holism, which emphasizes the study of complex sys-
tems as integrated wholes. A consistent holistic approach has so far led to the notion of cancer as a 
special organ, stimulating debate about its function and evolutionary significance. This article discuss-
es the role of cancer as a mechanism of purifying selection of the gene pool, the correlation between 
hereditary and sporadic cancer, the cancer interactome, and the role of metastasis in a lethal outcome. 
It is also proposed that neutralizing the cancer interactome may be a novel treatment strategy.

Keywords: war on cancer, cancer origin, cancer therapy, hallmarks of cancer, phenoptosis, cancer ma-
leficence, neutralization strategy
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