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Гиалуроновая кислота (ГК) является основным структурообразующим полимером внеклеточ-
ного матрикса. Метаболизм ГК играет важную роль в межклеточном взаимодействии в норме 
и при различных патологиях. Синтез ГК осуществляется гиалуронан-синтазами (HAS), пред-
ставленными у млекопитающих тремя высокогомологичными изоформами HAS1, HAS2 и HAS3. 
До настоящего времени не описано высокоспецифичных конкурентных ингибиторов HAS. Наи-
более широко применяется для ингибирования синтеза ГК in  vivo и в культуре клеток 4-мети-
лумбеллиферон (4-МУ), природное соединение кумаринового ряда. Обзор посвящен рассмотре-
нию молекулярных основ терапевтического действия 4-МУ. Будут рассмотрены многочисленные 
эксперименты на культурах тканей, животных моделях заболеваний и первые клинические 
исследования с применением 4-МУ, доказывающие, что, наряду со многими рецепторами и 
транскрипционными факторами, основной фармакологической мишенью этого соединения 
является наиболее распространенная изоформа гиалуронан-синтазы HAS2, и именно с ингиби-
рованием синтеза ГК связаны фармакологические эффекты 4-МУ в онкологических, аутоиммун-
ных, дегенеративных и гиперкомпенсированных регенеративных процессах (фиброз, образова-
ние шрамов). Новые клинические препараты на основе более специфичных ингибиторов HAS2 
будут первыми в классе для лечения широкого ряда заболеваний.

КЛЮЧЕВЫЕ СЛОВА: 4-метилумбеллиферон, одестон, гимекромон, ингибирование гиалуронан-
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Принятые сокращения: ГК – гиалуроновая кислота; ВКМ – внеклеточный матрикс; 4-МУ – 4-метилумбелли-
ферон; 4-МУГ  – 4-метилумбеллиферон-бета-Д-глюкуронид; HAS  – гиалуронан-синтаза.
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«Самая плодотворная основа для открытия нового лекарства – начать со старого лекарства»
Сэр Джеймс Блэк, лауреат Нобелевской премии 1988 года в области медицины

ВВЕДЕНИЕ

В постгеномную эру создание новых тера-
певтических препаратов опирается на детальное 
знание сигнальных путей и участвующих в них 
ключевых эффекторов, или фармакологических 
мишеней: ферментов, рецепторов, транскрипци-
онных факторов. При этом по-прежнему важную 

роль в выявлении и валидации фармакологиче-
ских мишеней играют физиологически активные 
вещества. К  настоящему времени накопилось 
большое количество экспериментальных дан-
ных, подтверждающих терапевтическое действие 
4-метилумбеллиферон (4-МУ), природного соеди-
нения кумаринового ряда, в животных моделях 
онкологических, аутоиммунных, дегенеративных 
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и гиперпролиферативных заболеваний. Данный 
обзор посвящен валидации гиалуронан-синтазы 
как главной фармакологической мишени 4-МУ, 
что является необходимым этапом при создании 
новых в классе лекарственных препаратов  – ин-
гибиторов синтеза гиалуроновой кислоты  (ГК).

РОЛЬ ВНЕКЛЕТОЧНОГО МАТРИКСА  
В НОРМЕ И ПРИ ПАТОЛОГИИ

Внеклеточный матрикс  (ВКМ), составляющий 
основу соединительной ткани, является высоко-
организованной внеклеточной структурой, обес-
печивающей механическую целостность и меж-
клеточное взаимодействие.

ВКМ состоит из полимерных углеводов – гли-
козаминогликанов  (ГАГ) и различных белков (в 
основном фибриллярных) и протеогликанов  (ПГ). 
ВКМ  является одновременно барьером и депо 
для пептидных гормонов и цитокинов. Он  также 
непосредственно генерирует химические и меха-
нические сигналы, необходимые для поддержания 
гомеостаза тканей. Патологические процессы при 
ряде системных заболеваний приводят к пере-
стройке ВКМ, изменениям в его структуре, что в 
конечном итоге способствует изменению ткане-
вой архитектуры и способствует развитию таких 
заболеваний, как фиброз, остеоартрит и рак [1, 2].

ГК, полимер, состоящий из остатков  D-глю
куроновой кислоты и  D-N-ацетилглюкозамина, 
соединенных поочередно β-1,4- и β-1,3-гликозид-
ными связями; он является основным по массе 
компонентом внеклеточного матрикса. Гомео-
стаз  ГК поддерживается синтетической актив-
ностью гиалуронан-синтаз  (HAS) и распадом под 
действием гиалуронидаз и химической деграда-
ции в основном под действием активных форм 
кислорода. Известны три изоформы фермента 
гиалуронан-синтазы: HAS1, активная в эмбриоге-
незе; HAS2, основная изоформа как в эмбриогене-
зе, так и в большинстве тканей в постнатальном 
периоде, синтезирующая высокомолекулярные 
формы  (ВМФ) размером 1000–6000  кДа; HAS3, син-
тезирующая низкомолекулярные формы ГК (НМФ), 
менее 250  кДа. ГК с высокой молекулярной массой 
обычно ассоциируется с противовоспалительны-
ми, антиангиогенными и противораковыми свой-
ствами. Напротив, низкомолекулярные фракции 
ГК проявляют провоспалительные и проангиоген-
ные эффекты и способствуют клеточной адгезии. 
Хотя эти свойства ГК общепризнаны, механизмы, 
лежащие в их основе, не полностью понятны и 
остаются предметом исследований  [3].

Кроме того, в организме человека существу-
ют различные типы гиалуронидаз, расщепляю-
щих  ГК. Наиболее подробно охарактеризованны-

ми являются HYAL-1 и HYAL-2. HYAL-2 расщепляет 
ГК на фрагменты длиной приблизительно в 
50  мономеров (≈20  кДа), в то время как HYAL-1 
расщепляет ГК на тетрасахаридные фрагменты 
(≈1600  Да), которые впоследствии подвергаются 
дальнейшему разложению в лизосомах  [4]. Па-
тологические процессы, такие как нарушение 
метаболических путей ГК, рак, повреждение и 
воспаление тканей, могут изменить этот баланс, 
увеличивая концентрацию НМФ  ГК. Существует 
множество убедительных доказательств вовле-
чения ГК в патологические процессы развития 
хронического воспаления, свойственного таким 
заболеваниям, как диабет 2-го типа, цирроз пече-
ни, астма, а также в процессы прогрессии и мета-
стазирования рака. Так, ГК увеличивает адгезию 
и подвижность метастазирующих клеток мела-
номы  [5], увеличивает подвижность клеток рака 
поджелудочной железы  [6] и простаты  [7], затруд-
няет доставку лекарств к опухолям  [8–10], способ-
ствует развитию устойчивости к лекарствам  [11], 
усиливает клеточное деление [12] и действует как 
фактор регуляции иммунитета  [13]. Увеличение 
экспрессии ГК в строме опухоли является негатив-
ным прогностическим признаком  [14–18].

Уровень ГК в крови является маркером фиб-
роза печени. Синтез ГК в фиброзной печени осу-
ществляется фибробластами, происходящими из 
активированных звездчатых клеток. В  норме 
звездчатые клетки не экспрессируют основной 
фермент, продуцирующий ГК во взрослых тка-
нях, гиалуронан-синтазы 2-го типа (HAS2), и не 
синтезируют ГК, но поражение печени приводит 
к выработке TGF-β, запускающего трансдифферен-
циацию звездчатых клеток в миофибробласты и 
драматически увеличивающего экспрессию HAS2 
в них  [19]. Накопление ГК в паренхиме вызывает 
активацию Notch1-сигнального пути в звездчатых 
клетках, что приводит к их активации, повышен-
ному синтезу межклеточного матрикса и разви-
тию фиброза  [20]. Таким образом, HAS2 и HAS3 
являются важной фармакологической мишенью 
в терапии заболеваний, связанных с патологиче-
ской активацией синтеза ГК, в частности, фиб-
роза печени.

Молекулярные механизмы синтеза ГК гиалу-
ронан-синтазами млекопитающих приобретают 
важное значение в связи с целенаправленным по-
иском специфических ингибиторов  – потенциаль-
ных лекарственных препаратов. Наиболее полно 
эти механизмы рассмотрены в обзоре DeAngelis 
и Zimmer  [21]. В  течение нескольких лет после 
открытия бактериального фермента из стрепто-
кокка, SpHAS, были открыты три изоформы HAS 
позвоночных (изоферменты HAS1, -2, -3) и вирусная 
HAS (CvHAS вируса хлореллы Paramecium bursaria, 
PBCV-1). CvHAS демонстрирует сходство в общей 
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Рис.  1. Схема синтеза ГК с участием гиалуронан-синтазы. UDP-GlcNAc  – уридин-5′-дифосфат-N-ацетилглюко
замин; GlcA  – глюкуроновая кислота

архитектуре трансмембранных  (ТМ) доменов, с 
двумя TM-спиралями на N-конце и четырьмя – на 
С-конце, и цитоплазматического домена с актив-
ным центром фермента. Все эти ферменты отно-
сятся к первому классу гликозилтрансфераз, одна-
ко HAS позвоночных и вирусная CvHAS добавляют 
сахара с невосстанавливающего конца  (рис.  1), в 
отличие от SpHAS, у которой рост цепи осущест-
вляется с восстанавливающего конца.

Ферменты позвоночных, CvHAS и SpHAS, име-
ют гликозилтрансферазный домен второго типа 
(GT-2), позволяющий осуществлять реакции с обо-
ими мономерами: как с уридин-5′-дифосфат-глю
куроновой кислотой (UDP-GlcA), так и с уридин-5′-
дифосфат-N-ацетилглюкозамином (UDP-GlcNAc). 
Методом электронной криомикроскопии уста-
новлена трехмерная структура вирусного фер-
мента CvHAS  [22]. Повсеместно применяющимся 
и единственным хорошо охарактеризованным ин-
гибитором синтеза ГК является 4-МУ, способный 
значительно снижать экспрессию гиалуронан-
синтаз HAS2/HAS3  [1]. В  клинической медицине 
4-МУ известен под торговым названием «Гиме-
кромон» или «Одестон». Этот препарат одобрен к 
применению в странах Европы и Азии и рутинно 
используется в качестве гепатопротектора и для 
лечения спазмов и дискинезии желчных прото-
ков. Так, в Италии препарат распространяется под 
названием «Cantabilin» и авторизован агентством 
лекарственных средств Италии (Italian Medicines 
Agency; AIC  no.  02130002).

МЕХАНИЗМ ДЕЙСТВИЯ 4-МУ  
НА СИНТЕЗ ГИАЛУРОНОВОЙ КИСЛОТЫ

Данные о конкурентном ингибировании или 
даже о прямом взаимодействии 4-МУ с ферментом 

отсутствуют. 4-МУ не влияет на ферментативную 
активность солюбилизированного фермента  [23]. 
Наиболее распространенная гипотеза постулиру-
ет, что 4-МУ является конкурентным субстратом 
для уридин-5′-дифосфат-глюкуранозилтрансфера-
зы  (UGT), таким образом, истощая клеточный пул 
уридин-5′-дифосфат-глюкуроновой кислоты  (UDP-
GlcA), необходимой для синтеза ГК [24–26] (рис. 2).

Эта гипотеза также не подтверждена экспе-
риментально. Против нее свидетельствует то, что 
4-МУ не влияет на синтез других гликозаминогли-
канов, в состав которых входят те же мономеры, 
что и в ГК. Кроме того, кумарины с алкилиро-
ванным гидроксилом  7, которые не могут быть 
субстратом для UGT, все равно обладают высокой 
ингибирующей способностью в исследованиях 
in  vitro  [27]. Показано, что 4-МУ снижает уровень 
экспрессии мРНК HAS2 [25,  28,  29] и одновременно 
повышает уровень экспрессии гиалуронидазы  1 
(Hyal1) [30], а также снижает уровни фосфорилазы 
и дегидрогеназы уридин-5′-дифосфат-глюкозы  [31]. 
При этом неизвестно, как именно осуществля-
ется транскрипционная регуляция синтеза  ГК 
и насколько механизм избирателен для этих 
мРНК  (рис.  3).

4-МУ, как было показано нами и другими 
исследователями  [32,  33], имеет множественные 
мишени, не связанные прямо с метаболизмом ГК. 
Не  исключено, что снижение накопления ГК в 
среде при исследованиях in  vitro является куму-
лятивным действием нескольких параллельных 
процессов, включая возможное истощение суб-
страта, a также экспериментально показанным 
снижением экспрессии HAS2 и увеличением экс-
прессии Hyal1  [30]. Известно также, что экспрес-
сия HAS2 регулируется ядерными рецепторами, 
в частности, глюкокортикоидным рецептором, и 
экспрессия HAS2 практически полностью подав-
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Рис.  2. Предполагаемый механизм действия 4-МУ на синтез  ГК. а  –  Схема представляет нормальный путь 
синтеза  ГК. б  –  Схема показывает замещение UDP пулом 4-МУ, вследствие чего HAS не может синтезиро-
вать  ГК. GlcNAc – N-ацетилглюкозамин; GlcA – глюкуроновая кислота; 4-МУ – 4-метилумбеллиферон; UDP  – 
уридин-5′-дифосфат; UGT – уридин-5′-дифосфат-глюкуранозилтрансфераза; UDP-GlcNAc – уридин-5′-дифос-
фат-N-ацетилглюкозамин; UDP-GlcA – уридин-5′-дифосфат-глюкуроновая кислота; HAS – гиалуронан-синтаза;  
GlcNAc-β(1,4)-GlcA – N-ацетил-глюкозамин-β(1,4)-глюкуроновая кислота. Рисунок заимствован из статьи 
Nagy  et  al.,  2015  [26]

Рис. 3. Схематическое представление путей ингиби-
рования синтеза  ГК 4-МУ. Действие 4-МУ осущест-
вляется несколькими способами: либо истощением 
предшественника  ГК, UDP-глюкуроновой кислоты; 
либо ингибированием экспрессии гена, кодирую-
щего HAS2 в ядре; либо опосредованным ингиби-
рованием активности гиалуронан-синтазы. 4-МУ  – 
4-метилумбеллиферон; HAS2  – гиалуронан-синтаза. 
Рисунок заимствован из обзора Vitale  et  al.  [1]

ляется дексаметазоном  [34]. Исследования выяви-
ли изменения клеточного цикла и р53-пути при 
воздействии 4-МУ  [35,  36].

ДЕЙСТВИЕ 4-МУ НА РАЗЛИЧНЫЕ ВИДЫ РАКА, 
АУТОИММУННЫЕ ПРОЦЕССЫ  
И ПРОЦЕССЫ ВОСПАЛЕНИЯ

4-МУ оказывает действие на такие связанные 
с прогрессией опухоли процессы, как миграция, 

пролиферация, инвазия раковых клеток и ангио-
генез. Клетки микроокружения опухоли, пред-
ставленные эндотелиальными клетками, клетка-
ми иммунной системы и фибробластами, также 
испытывают влияние 4-МУ. Все эти процессы со-
пряжены с активными изменениями в строении 
и составе межклеточного матрикса, основным 
компонентом которого является  ГК. Эти работы 
обосновывают разработку лекарств, направлен-
ных на изменение свойств межклеточного мат-
рикса. Такой подход является многообещающим в 
лечении различных видов рака, а 4-МУ представ-
ляет собой уже допущенный к применению пре-
парат, который может быть использован в новом 
качестве.

На мышиной модели фиброза печени, вызван-
ном четыреххлористым углеродом, нами было 
показано, что образованию коллагеновых тяжей 
предшествует синтез ГК вдоль границ печеноч-
ных долек. 4-МУ препятствовал первоначальному 
образованию тяжей ГК и приводил к значитель-
ному уменьшению коллагеновых фибриллярных 
образований вокруг печеночных долек [30]. Пока-
зательно, что в нашей последующей работе нок-
даун гена, кодирующего HAS2, при помощи спе-
цифичной siRNA воспроизводил действие 4-МУ 
на ряд сигнальных путей и транскрипцию ряда 
ключевых генов, приводя к подавлению фиброза 
печени  [37].

Отдельный интерес представляет возмож-
ность применения 4-МУ для лечения заболеваний 
головного мозга. ВКМ злокачественных глиом, 
а также глиобластом отличается повышенным 
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содержанием ГК, стимулирующей адгезивные и 
инвазивные процессы опухоли [38]. 4-МУ является 
малой молекулой, способной преодолевать гема-
тоэнцефалический барьер и ингибировать синтез 
главного компонента внеклеточного матрикса, ГК, 
что создало предпосылки для исследования это-
го вещества для терапии глиом и глиобластом.  
Так, на мышиных моделях было показано, что вы-
сокие дозы 4-МУ снижали синтез ГК, одновремен-
но усиливая апоптоз и снижая пролиферацию и 
миграцию клеток глиобластомы  [39–41]. Действие 
4-МУ на клетки глиомы заключалось в снижении 

пролиферации in  vitro и in  vivo путем регуляции 
процессов аутофагии  [42]. Кроме того, в работе 
Chistyakov  et  al.  [43] доказана способность 4-МУ 
ингибировать воспалительный ответ астроцитов. 
Пероральный прием 4-МУ приводил к значимому 
снижению  ГК в спинном и головном мозге мы-
шей, снижению синаптической стабильности и 
реактивации нейропластичности, что приводило 
к улучшению памяти  [44].

Данные по доклиническим исследованиям 
4-МУ для лечения различных типов заболеваний 
приведены в  табл.  1.

Таблица 1. Доклинические исследования действия 4-МУ на различные заболевания

Орган/система Исследуемая болезнь Год Тип  
исследования Ссылка

Воспаление

острый респираторный  
дистресс-синдром (ОРДС)

2013 in vitro [45]

2015 in vitro [46]

аллергическое воспаление 2022 in vitro [47]

аллергический ринит 2022 in vitro/in vivo [48]

воспаление 2022 in vitro [49]

Голова и шея плоскоклеточный рак полости рта 2022 in vitro [50]

Желчевыводящие пути
дискинезия желчных протоков 1984 in vivo [51]

желчные колики 1995 in vivo [52]

Иммунный ответ

орбитопатия Грейвса 2020 in vitro [53]

отторжение трансплантата 2021 in vitro/in vivo [54]

аутоиммунный ответ  
на трансплантированные  

островки Лангерганса
2020 in vitro/in vivo [55]

острое отторжение аллотрансплантата 
легкого 2021 in vitro/in vivo [56]

Костный мозг хронический миелоидный лейкоз

2013 in vitro [57]

2016 in vitro [58]

2017 in vitro [59]

Легкие
мезотелиома плевры 2017 in vitro/in vivo [60]

фиброз легких и легочная гипертензия 2017 in vivo [61]

Молочные железы рак молочной железы
2019 in vitro [62]

2022 in vitro [63]

Мочевой пузырь рак мочевого пузыря 2017 in vitro/in vivo [64]

Периферическая  
нервная система

злокачественная опухоль оболочки  
периферического нерва 2017 in vitro/in vivo [65]
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Таблица 1 (продолжение)

Орган/система Исследуемая болезнь Год Тип  
исследования Ссылка

Печень

гепатоцеллюлярная карцинома

2012 in vitro/in vivo [66]

2015 in vitro/in vivo [67]

2019 in vitro/in vivo [29]

2021 in vitro/in vivo [68]

2022 in vitro/in vivo [69]

метастазирование меланомы в печень 2005 in vitro/in vivo [70]

фиброз печени 2019 in vivo [30]

стеатогепатит 2021 in vitro/in vivo [71]

Поджелудочная железа
рак поджелудочной железы

2006 in vitro/in vivo [72]

2016 in vitro/in vivo [73]

2017 in vitro/in vivo [74]

2018 in vitro/in vivo [75, 76]

аденокарцинома протоков  
поджелудочной железы 2019 in vitro [77, 78]

Почки

почечно-клеточная карцинома 2013 in vitro [79]

ишемически-реперфузионное  
повреждение почек 2013 in vivo [80]

метастатический почечно-клеточный рак 2020 in vitro [81]

диабетическая болезнь почек 2021 in vivo [82]

прогрессирующая почечно-клеточная 
карцинома 2022 in vitro/in vivo [83]

Простата рак предстательной железы
2010 in vitro [84]

2015 in vitro/in vivo [85]

Соединительная ткань фибросаркома

2017 in vitro [86]

2019 in vitro [87]

2020 in vitro [88]

2021 in vitro [89]

Толстый кишечник колоректальная карцинома 2015 in vitro/in vivo [90]

Центральная  
нервная система глиобластома

2021 in vitro [39, 40]

2022 in vitro/in vivo [91]

Эндометрий эндометриоз

2016 in vitro/in vivo [92]

2020 in vitro [93]

2023 in vivo [94]



ТЕРАПЕВТИЧЕСКИЕ СВОЙСТВА 4-МЕТИЛУМБЕЛЛИФЕРОНА 9

БИОХИМИЯ том 90 вып. 1 2025

Таблица 1 (окончание)

Орган/система Исследуемая болезнь Год Тип  
исследования Ссылка

Яичники рак яичников

2014 in vitro [95]

2019 in vitro/in vivo [96]

2020 in vitro [97]

ПЕРСПЕКТИВА ЛЕЧЕНИЯ РАЗЛИЧНЫХ  
ЗАБОЛЕВАНИЙ КОМБИНАЦИЯМИ С 4-МУ. 

ДЕЙСТВИЕ НА ФИЗИЧЕСКИЙ БАРЬЕР  
ОПУХОЛИ. ПРИМЕНЕНИЕ 4-МУ  

В КАЧЕСТВЕ ИНГИБИТОРА СИНТЕЗА  
ГИАЛУРОНОВОЙ КИСЛОТЫ

Окружающий клетки ВКМ, богатый  ГК, со-
ставляет биологический барьер микроокружения 
опухоли. Этот барьер регулирует работу иммун-
ных эффекторов  [13,  98], ингибирует диффузию 
лекарственных препаратов  [99], затрудняет по-
глощение ДНК-трансгенных комплексов при про-
ведении генной терапии  [100] и играет важную 
роль в приобретении резистентности к противо-
раковым препаратам  [1,  11,  101].

Возможность изменения свойств микроокру-
жения опухоли с целью улучшения результата 
различных противоопухолевых терапий в на-
стоящее время активно исследуется. Патологич-
ное микроокружение опухоли характеризуется 
гипоксией и высоким внутритканевым давле-
нием жидкости, приводящим к прогрессии опу-
холи и развитию устойчивости к проводимому 
лечению  [102]. Повышение внутритканевого дав-
ления рассматривается как наиболее важный 
барьер для эффективного распределения лекар-
ственного препарата внутри опухоли. Причины 
повышения внутритканевого давления опухоли 
многочисленны и включают в себя наличие в 
опухоли развитой сети кровеносных сосудов, 
недостаточное развитие лимфатических сосудов, 
изменение компонентов внеклеточного матрикса 
и давление, создаваемое постоянно делящимися 
клетками опухоли  [103,  104]. Повышенное содер-
жание в окружающих опухоль тканях ГК способ-
ствует увеличению объема внеклеточного мат-
рикса и, как следствие, повышению давления 
внутри опухоли [105, 106]. Высокое содержание ГК 
в микроокружении опухоли создает физический 
барьер, ограничивающий доступ моноклональ-
ных антител и иммунных клеток к опухолевой 
ткани. Это один из механизмов возникновения 
устойчивости опухолевых тканей к проводимой 
иммунотерапии  [107].

Способность 4-МУ ингибировать синтез  ГК 
создает предпосылки для его использования в 

качестве адъювантной терапии при лечении рака 
в комбинации с первичной терапией. На  различ-
ных моделях показано, что использование 4-МУ 
в качестве сопутствующей терапии различных 
видов рака повышает эффективность лечения, 
снижает токсичность противоопухолевых препа-
ратов и помогает преодолеть возникшую химио-
резистентность  (табл.  2).

Согласно имеющимся данным по исследова-
нию 4-МУ в качестве добавки к основной терапии, 
4-МУ повышает радиочувствительность устойчи-
вых к облучению клеток плоскоклеточного рака 
полости рта  [50] и фибросаркомы  [86–89]. Сора-
фениб в комбинации с 4-МУ эффективнее инги-
бирует пролиферацию, инвазию, формирование 
капилляров и индуцирует апоптоз клеток кар-
циномы почек и эндотелиальных клеток  [79,  83]. 
4-МУ повышает эффективность 5-флюороураци-
ла  [68] и гемцитабина  [72] в отношении рака под-
желудочной железы, ингибируя пролиферацию 
клеток и приводя к уменьшению размеров пер-
вичных опухолей и метастазов, а также увели-
чивая выживаемость больных животных. 4-МУ 
повышает чувствительность клеток глиобласто-
мы к темозоломиду, усиливая действие препа-
рата на клеточную гибель  [41]. 4-МУ повышает 
цитотоксический эффект карбоплатина на клетки 
химиорезистентного рака яичников  [96]. При со-
вместном применении дихлорацетата и 4-МУ на 
модели плоскоклеточного рака пищевода проис-
ходит усиление апоптоза и ингибирования роста 
опухоли [108]. Клетки миелоидной лейкемии при 
обработке 4-МУ становились более чувствитель-
ными к доксирубицину  [58] и увеличивали ско-
рость старения  [59]. На  клетках меланомы пока-
зано, что комбинация вемурафениба с 4-МУ более 
эффективно снижала выживаемость раковых кле-
ток по сравнению с монотерапией вемурафени-
бом [109]. 4-МУ повышает химиочувствительность 
клеток уротелиальной карциномы мочевого пу-
зыря к доксирубицину и цисплатину  [110]. 4-МУ 
значительно снижает внутритканевое давление 
опухоли и улучшает ее перфузию, способствуя 
более эффективной экспрессии аденовирусного 
трансгена при проведении иммунотерапии IL-12 
(AdIL-12) для лечения колоректального рака  [90].  
При исследовании на модели рака печени 4-МУ 
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Таблица 2. Доклинические исследования эффективности лечения различных видов рака комбинациями 
лекарств с 4-МУ

Исследуемая болезнь Основное лечение Тип исследования Год Ссылка

Гепатоцеллюлярная карцинома иммунотерапия: аденовирус,  
кодирующий IL-12 (AdIL-12) in vitro 2018 [111]

Глиобластома темозоломид in vitro 2023 [41]

Злокачественная мезотелиома 
плевры траметиниб in vitro/in vivo 2017 [60]

Колоректальная карцинома циклофосфамид  
с иммунотерапией (AdIL-12) in vitro/in vivo 2015 [90]

Меланома вемурафениб in vitro 2021 [109]

Плоскоклеточный  
рак пищевода дихлоруксусная кислота in vitro/in vivo 2019 [108]

Плоскоклеточный  
рак полости рта радиотерапия in vitro 2022 [50]

Почечно-клеточная карцинома сорафениб in vitro 2013 [79]

Прогрессирующая  
почечно-клеточная карцинома сорафениб in vitro/in vivo 2022 [83]

Рак поджелудочной железы 5-фторурацил in vitro/in vivo 2018 [76]

Рак поджелудочной железы гемцитабин in vitro/in vivo 2006 [72]

Рак яичника карбоплатин in vitro/in vivo 2019 [96]

Уротелиальная карцинома  
мочевого пузыря цисплатин или доксорубицин in vivo 2019 [110]

Фибросаркома радиотерапия

in vitro 2021 [89]

in vitro 2019 [87]

in vitro 2017 [86]

Хронический  
миелоидный лейкоз иматиниб in vitro 2017 [59]

Хронический  
миелоидный лейкоз доксорубицин in vitro 2016 [58]

в  комбинации с AdIL-12 привел к более выражен-
ному ингибированию роста опухоли и повыше-
нию выживаемости мышей по сравнению с моно-
терапией  [111].

ПРИМЕНЕНИЕ 4-МУ В КАЧЕСТВЕ  
ГЕПАТОПРОТЕКТОРА И ХОЛЕСТАТИКА  

ДЛЯ УМЕНЬШЕНИЯ ГЕПАТОТОКСИЧНОСТИ 
ПЕРВИЧНОЙ ТЕРАПИИ

Ингибиторы иммунных чекпойнтов, цитоки-
ны и антитела к ним, используются в качестве 
иммуномодуляторов для усиления иммунологи-
ческого ответа организма в ответ на опухоли и 
очаги хронического воспаления при ревматоид-

ных, аутоиммунных и воспалительных заболева-
ниях  [112,  113]. Эти препараты успешно прошли 
клинические испытания и одобрены к примене-
нию европейским и американским агентствами 
по лекарственным средствам  [114]. Однако до 
17%  пациентов, получающих подобную иммуно-
терапию, страдают от осложнений, связанных с 
повреждением печени и желчевыводящих про-
токов  [115–119].

Для лечения возникшей гепатотоксичности, 
в зависимости от ее тяжести, рекомендуется пре-
кратить прием ингибиторов иммунных чекпойн-
тов, в некоторых случаях показано применение 
кортикостероидов, а в более тяжелых случаях  – 
применение иммуносупрессии [120–123]. В случае 
развития холестатической формы гепатотоксич-
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ности, когда кортикостероиды оказываются неэф-
фективны, улучшить показатели печени помогает 
урсодеоксихолиевая кислота  [124–127]. Она обла-
дает доказанными гепатопротекторными и жел-
чегонными свойствами и считается стандартом 
терапии холестатических заболеваний печени с 
аутоиммунным компонентом, таких, например, 
как первичный билиарный цирроз, первичный 
склерозирующий холангит [128–130]. В настоящее 
время опубликованных данных о влиянии 4-МУ 
на риск развития гепатотоксичности в ответ на 
иммунотерапию не обнаружено, но, как и в слу-
чае с урсодеоксихолиевой кислотой, доказанные 
холестатические и гепатопротекторные свойства 
4-МУ делают его многообещающим кандидатом 
на проведение таких исследований.

Представленные данные создают предпосыл-
ки и указывают на необходимость проведения 
полноценных клинических испытаний 4-МУ в 
качестве адъювантной/дополнительной противо-
опухолевой терапии, которая способствует сниже-
нию содержания  ГК, оказывает действие на ВКМ 
и микроокружение опухоли, снижает внутри-
тканевое давление, улучшает перфузию опухоли, 
облегчает доступ лекарственных препаратов и 
оказывает гепатопротекторное и холестатическое 
действие, уменьшая таким образом риски разви-
тия гепатотоксичности при проведении иммуно-
терапии.

ТОПИЧЕСКОЕ ПРИМЕНЕНИЕ 4-МУ  
В КАЧЕСТВЕ ВЕЩЕСТВА, ПРЕПЯТСТВУЮЩЕГО 

ОБРАЗОВАНИЮ РАСТЯЖЕК, ШРАМОВ,  
КЕЛОИДНЫХ РУБЦОВ, СОЛНЕЧНЫХ ОЖОГОВ 

И ОЧАГОВ ГИПОПИГМЕНТАЦИИ

Топическое нанесение 4-МУ приводит к эффек-
тивному ингибированию синтеза ГК в коже [131]. 
Показано, что 4-МУ предотвращает активацию ке-
ратиноцитов, снижает эпидермальную гиперпро-
лиферацию [132] и скорость миграции келоидных 
кератиноцитов, уменьшая вероятность образова-
ния келоидных рубцов  [133].

4-МУ усиливает процессы меланогенеза, что 
делает его перспективным кандидатом для лече-
ния состояний кожи, связанных с гипопигмен-
тацией, а также применения в качестве косме-
тического средства для создания естественного 
загара  [134].

МЕТАБОЛИЗМ 4-МУ. ТОКСИЧНОСТЬ  
И БЕЗОПАСНОСТЬ ДЛЯ ЧЕЛОВЕКА

4-МУ, как и все кумарины, слабо растворим 
в воде. Он  является неполярной молекулой, и 

поэтому легко преодолевает липидный барьер в 
кишечнике, практически полностью абсорбиру-
ется при оральном приеме и выводится с мочой 
и желчью [26]. Метильная группа в позиции 4 
обеспечивает низкую токсичность препарата, 
предотвращая его метаболизм в кумарин-3,4-эпок-
сид под воздействием цитохрома Р450, и слабые 
антикоагуляционные свойства по сравнению с 
другими кумаринами, такими как дикумарин и 
варфарин [135].

При поступлении в организм 4-МУ очень бы-
стро и почти полностью метаболизируется в пе-
чени и тонком кишечнике в 4-метилумбеллифе-
рон-бета-Д-глюкуронид (4-МУГ), что до настоящего 
времени ограничивало его применение для лече-
ние только желчевыводящих протоков  [1,  136–
138]. При оральном приеме 4-МУ менее 3% исход-
ной дозы лекарства достигает системного уровня 
в неизменном виде. При внутривенном введе-
нии 4-МУ его концентрация в крови в 10–30  раз 
выше [26,  139]. Время полужизни 4-МУ при ораль-
ном приеме составляет всего 28  минут для чело-
века и 3 минуты – для мышей [140, 141]. При этом 
медианная концентрация 4-МУГ в плазме выше 
концентрации 4-МУ более чем в 3000 раз [26, 141]. 
Можно говорить, что при приеме лекарства боль-
шая его часть находится в организме в виде его 
метаболита 4-МУГ. Но  несмотря на низкую био-
доступность и короткое время полужизни пре-
парата, 4-МУ оказывает эффективное ингибирую-
щее влияние на синтез ГК при оральном приеме. 
Оказалось, что 4-МУГ так же эффективно, как и 
4-МУ, ингибирует синтез  ГК, а внутри клетки он 
гидролизуется обратно до 4-МУ [137]. Поэтому для 
оценки фармакодинамики препарата необходимо 
принимать в расчет действие его метаболита, 
4-МУГ. Эти данные создают предпосылки приме-
нения 4-МУ для лечения заболеваний далеко за 
пределами желчевыводящих путей. Так, являясь 
малой неполярной молекулой, 4-МУ способен пре-
одолевать гематоэнцефалический барьер и эффек-
тивно ингибировать деление клеток глиомы  [42].

Типичный режим дозирования 4-МУ для взрос-
лого человека составляет 900–2400  мг/день  [26]. 
При этом никаких мутагенных или генотоксиче-
ских эффектов не обнаружено [1, 142, 143]. Клини-
ческие испытания в США на пациентах с хрони-
ческими гепатитами В и С (NCT00225537), а также 
на здоровых людях и на пациентах с заболева-
ниями дыхательной системы  (NCT02780752)  [144] 
доказали безопасность 4-МУ (см.  табл.  3).

ЗАКЛЮЧЕНИЕ

Несмотря на множество экспериментальных 
работ, демонстрирующих эффективность 4-МУ 
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Таблица 3. Клинические исследования 4-МУ в терапии различных заболеваний

Исследуемое заболевание/ 
цель исследования Статус Год

Ссылка/ 
идентификатор 
clinicaltrials.gov

Интерстициальные заболевания легких  
(The SOLID Study)

фаза II;  
набор участников 

не  начат
2024 NCT06325696

Первичный склерозирующий холангит фаза II;  
идет набор участников 2022 NCT05295680

COVID-19 неизвестно 2022 NCT05386420

Легочная гипертензия, включая  
интерстициальные заболевания легких  
(The SATURN Study)

фаза II;  
завершен 2021 NCT05128929

Здоровые участники;  
исследование влияния 4-МУ на синтез ГК

фаза I;  
завершен 2016 [144]/

NCT02780752

Билиарный сладж 2  стадии нет информации 2016 [145]

Хронический вирус гепатита  C  и гепатита  В неизвестно 2005 NCT00225537

Дискинезия желчных протоков нет информации 2005 [146]

Дискинезия желчных протоков нет информации 2001 [147]

Дискинезия желчных протоков нет информации 1995 [52]

Исследование биодоступности 4-МУ нет информации 1993 [141]

Симптомы после операции на желчных протоках нет информации 1988 [148]

Дискинезия желчных протоков  
после холецистэктомии нет информации 1984 [51]

в  различных животных моделях онкологических, 
иммунных и дегенеративных заболеваний, необ-
ходимо признать, что достоверные молекулярные 
механизмы действия остаются гипотетическими. 
Тем не менее существует доказательство того, что 
по крайней мере в модели фиброза печени нокда-
ун гена, кодирующего HAS2, приводит не только 
к подавлению фиброза, но и к изменениям тран-
скриптома, схожим с воздействием орального 
применения 4-МУ  [37]. При этом нельзя исклю-
чить, что некоторые из механизмов действия 4-МУ 
могут быть независимыми от ингибирования 
синтеза  ГК. Так, описаны независимые от  ГК эф-
фекты действия 4-МУ  [62, 149]. Также 4-МУ может 
обладать различными противоопухолевыми меха-
низмами в зависимости от типа рака. Однако, в 
совокупности, рассмотренные нами множествен-
ные данные об эффективности 4-МУ доказывают 
необходимость перехода к подробному изучению 
фармакокинетических и фармакодинамических 
аспектов, определяющих схему лечения (способ 
введения, дозы, влияющие на его биодоступность, 
время интервала между ними и график приема). 

Первые токсикологические исследования в фазе  I 
клинических исследований уже проведены  [144], 
что позволяет уже сейчас перейти к клиниче-
ским исследованиям эффективности препарата 
(фаза  IIa). Подобная тенденция наблюдается в 
мире. Так, в настоящее время планируется про-
ведение клинических испытаний 4-МУ по лече-
нию интерстициальных заболеваний легких и 
холангита  (см.  табл.  3).

При клинических испытаниях 4-МУ необхо-
димо подобрать дозы с учетом конкретной пато-
логии, скорости выведения его метаболитов и 
биодоступности. Создание новых форм, например, 
наночастиц, содержащих 4-МУ, является важным 
фактором, который не только позволит повысить 
биодоступность, но также создаст предпосылки 
для патентной защиты нового лекарственного 
средства.

И, наконец, если принять наши доводы о 
том, что главной фармакологической мишенью 
4-МУ является гиалуронан-синтаза, разработка 
новых химических соединений с использованием 
3Д-моделей HAS2/HAS3 и докинга потенциальных 



ТЕРАПЕВТИЧЕСКИЕ СВОЙСТВА 4-МЕТИЛУМБЕЛЛИФЕРОНА 13

БИОХИМИЯ том 90 вып. 1 2025

лигандов с привлечением подходов искусствен-
ного интеллекта должна неизбежно привести к 
созданию оригинальных первых в классе таргет-
ных лекарственных препаратов на основе инги-
биторов гиалуронан-синтазы.
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4-METHYLUMBELLIFERONE, AN HYALURONAN  
SYNTHASE INHIBITOR, PREVENTS THE DEVELOPMENT  
OF ONCOLOGICAL, INFLAMMATORY, DEGENERATIVE  

AND AUTOIMMUNE DISORDERS

Review
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In present review we consider numerous experiments on tissue cultures, animal models of diseases 
and the first clinical studies providing the prospects of creating new drugs based on 4-MU. We be-
lieve that along with many receptors and transcription factors, the main pharmacological target of 
4-MU is the hyaluronan synthase, which produces the main component of the extracellular matrix, 
glycosaminoglycan, hyaluronic acid (HA). The pharmacological effects of 4-MU in oncological, autoim-
mune, degenerative and hypercompensated regenerative processes (fibrosis, scarring) are associated 
with inhibition of HA synthesis. Clinical drugs based on 4-MU will be the first in the class for the 
treatment of a wide range of diseases.
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